A GaN–AlGaN–InGaN last quantum barrier in an InGaN/GaN multiple-quantum-well blue LED

The advantages of a GaN–AlGaN–InGaN last quantum barrier (LQB) in an InGaN-based blue light-emitting diode are analyzed via numerical simulation. We found an improved light output power, lower current leakage, higher recombination rate, and less efficiency droop compared with conventional GaN LQBs. These improvements in the electrical and optical characteristics are attributed mainly to the specially designed GaN–AlGaN–InGaN LQB, which enhances electron confinement and improves hole injection efficiency.

[1]  G. Fan,et al.  Efficiency enhancement of an InGaN light-emitting diode with a p-AlGaN/GaN superlattice last quantum barrier , 2013 .

[2]  Fan Guanghan,et al.  Performance improvement of blue InGaN light-emitting diodes with a specially designed n-AlGaN hole blocking layer , 2013 .

[3]  Jing Li,et al.  Enhanced performance of GaN based light-emitting diodes with a low temperature p-GaN hole injection layer , 2013 .

[4]  Fan Guanghan,et al.  The influence of AlGaN/GaN superlattices as electron blocking layers on the performance of blue InGaN light-emitting diodes , 2012 .

[5]  Woo Jin Ha,et al.  Promotion of hole injection enabled by GaInN/GaN light-emitting triodes and its effect on the efficiency droop , 2011 .

[6]  Hao-Chung Kuo,et al.  Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers , 2011 .

[7]  Yugang Zhou,et al.  Blue InGaN Light-emitting Diodes with Dip-shaped Quantum Wells , 2011 .

[8]  Z. Hassan,et al.  Quaternary ultraviolet AlInGaN MQW laser diode performance using quaternary AlInGaN electron blocking layer. , 2011, Optics express.

[9]  Hao-Chung Kuo,et al.  Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer , 2010 .

[10]  Y. Kuo,et al.  Investigation of Optical Performance of InGaN MQW LED With Thin Last Barrier , 2010, IEEE Photonics Technology Letters.

[11]  T. Hsu,et al.  Effect of P-Type Last Barrier on Efficiency Droop of Blue InGaN Light-Emitting Diodes , 2010, IEEE Journal of Quantum Electronics.

[12]  K. Delaney,et al.  Auger recombination rates in nitrides from first principles , 2009, 0904.3559.

[13]  Hadis Morkoç,et al.  On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p-doped quantum well barriers , 2008 .

[14]  E. Schubert,et al.  Polarization-matched GaInN∕AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop , 2008 .

[15]  Heqing Wang,et al.  Barrier effect on hole transport and carrier distribution in InGaN∕GaN multiple quantum well visible light-emitting diodes , 2008 .

[16]  Michael R. Krames,et al.  Carrier distribution in (0001)InGaN∕GaN multiple quantum well light-emitting diodes , 2008 .

[17]  E. Fred Schubert,et al.  Effect of dislocation density on efficiency droop in GaInN∕GaN light-emitting diodes , 2007 .

[18]  Bo E. Sernelius,et al.  Defect related issues in the current roll-off in InGaN based light emitting diodes , 2007 .

[19]  Michael R. Krames,et al.  Auger recombination in InGaN measured by photoluminescence , 2007 .

[20]  D. A. Zakheim,et al.  Analysis of dependence of electroluminescence efficiency of AlInGaN LED heterostructures on pumping , 2006 .

[21]  Jerry R. Meyer,et al.  Band parameters for nitrogen-containing semiconductors , 2003 .

[22]  G. Fan,et al.  Investigation of GaN-based light-emitting diodes using a p-GaN/i-InGaN short-period superlattice structure as last quantum barrier , 2013 .

[23]  Gerald B. Stringfellow,et al.  High brightness light emitting diodes , 1997 .