Cluster-based segmentation of dual-echo ultra-short echo time images for PET/MR bone localization

BackgroundMagnetic resonance (MR)-based attenuation correction is a critical component of integrated positron emission tomography (PET)/MR scanners. It is generally achieved by segmenting MR images into tissue classes with known attenuation properties (e.g., bone, fat, soft tissue, lung, air). Ultra-short echo time (UTE) have been proposed in the past to locate bone tissue. In this study, tri-modality computed tomography data was used to develop an improved algorithm for the localization of bone in the head and neck.MethodsTwenty patients were scanned using a tri-modality setup. A UTE acquisition with 22-cm transaxial and 24-cm axial field of view was acquired, with a resolution of 1.5 × 1.5 × 2.0 mm3. The sequence consisted of two echoes (30 μs, 1.7 ms) with a flip angle of 10° and 125-kHz bandwidth. The CT images of all patients were classified by thresholding and used to compute maps of the posterior probability of each tissue class, given a pair of UTE echo values. The Jaccard distance was used to compare with CT the bone masks obtained when using this information to segment the UTE datasets.ResultsThe results show the desired bony structures as a cluster pattern in the space of dual-echo measurements. The clusters obtained for the tissue classes are strongly overlapped, indicating that the MR data will not, regardless of the chosen space partition, be able to completely differentiate the bony and soft structures.The classification obtained by maximizing the posterior probability compared well to previously published methods, providing a more intuitive and robust choice of the final classification threshold. The distance between MR- and CT-based bone masks was 59% on average (0% being a perfect match), compared to 76% and 69% for two previously published methods.ConclusionsThe study of tri-modality datasets shows that improved bone tissue classification can be achieved by estimating maps of the posterior probability of voxels belonging to a particular tissue class, given a measured pair of UTE echoes.

[1]  Jiang Du,et al.  Qualitative and quantitative ultrashort‐TE MRI of cortical bone , 2013, NMR in biomedicine.

[2]  Adam Johansson,et al.  CT substitute derived from MRI sequences with ultrashort echo time. , 2011, Medical physics.

[3]  X. Zhong,et al.  Ultra-short TE ( UTE ) Imaging of Skull and a Quantitative Comparison of Skull Images Obtained from MRI and CT , 2009 .

[4]  B. Schölkopf,et al.  Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques , 2009, European Journal of Nuclear Medicine and Molecular Imaging.

[5]  E. Chang,et al.  Ultrashort echo time bi‐component analysis of cortical bone—a field dependence study , 2014, Magnetic resonance in medicine.

[6]  S. Vandenberghe,et al.  MRI-Based Attenuation Correction for PET/MRI Using Ultrashort Echo Time Sequences , 2010, Journal of Nuclear Medicine.

[7]  C. Kuhl,et al.  MRI-Based Attenuation Correction for Hybrid PET/MRI Systems: A 4-Class Tissue Segmentation Technique Using a Combined Ultrashort-Echo-Time/Dixon MRI Sequence , 2012, The Journal of Nuclear Medicine.

[8]  H. Quick,et al.  Magnetic Resonance–Based Attenuation Correction for PET/MR Hybrid Imaging Using Continuous Valued Attenuation Maps , 2013, Investigative radiology.

[9]  Dwight G Nishimura,et al.  Design and analysis of a practical 3D cones trajectory , 2006, Magnetic resonance in medicine.

[10]  A. Kouwe,et al.  MR-based PET Attenuation Correction for Neurological Studies Using Dual-Echo UTE Sequences , 2009 .

[11]  Ciprian Catana,et al.  Toward Implementing an MRI-Based PET Attenuation-Correction Method for Neurologic Studies on the MR-PET Brain Prototype , 2010, The Journal of Nuclear Medicine.

[12]  G. Delso,et al.  PET–MR imaging using a tri-modality PET/CT–MR system with a dedicated shuttle in clinical routine , 2013, Magnetic Resonance Materials in Physics, Biology and Medicine.

[13]  Nassir Navab,et al.  Tissue Classification as a Potential Approach for Attenuation Correction in Whole-Body PET/MRI: Evaluation with PET/CT Data , 2009, Journal of Nuclear Medicine.

[14]  Adam Johansson,et al.  Evaluation of an attenuation correction method for PET/MR imaging of the head based on substitute CT images , 2013, Magnetic Resonance Materials in Physics, Biology and Medicine.

[15]  Koichi Masuda,et al.  Quantitative ultrashort echo time (UTE) MRI of human cortical bone: Correlation with porosity and biomechanical properties , 2012, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.