A Large-Scale Marketing Model using Variational Bayes Inference for Sparse Transaction Data

Large-scale databases in marketing track multiple consumers across multiple product categories. A challenge in modeling these data is the resulting size of the data matrix, which often has thousands of consumers and thousands of choice alternatives with prices and merchandising variables changing over time. We develop a heterogeneous topic model for these data, and employ variational Bayes techniques for estimation that are shown to be accurate in a Monte Carlo simulation study. We find the model to be highly scalable and useful for identifying effective marketing variables for different consumers, and for predicting the choices of infrequent purchasers.

[1]  Peter E. Rossi,et al.  Bayesian Statistics and Marketing , 2005 .

[2]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[3]  Arthur Spirling,et al.  Identifying Intraparty Voting Blocs in the U.K. House of Commons , 2010 .

[4]  Yoichi Motomura,et al.  Category Mining by Heterogeneous Data Fusion Using PdLSI Model in a Retail Service , 2010, 2010 IEEE International Conference on Data Mining.

[5]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[6]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[7]  Naonori Ueda,et al.  Topic Tracking Model for Analyzing Consumer Purchase Behavior , 2009, IJCAI.

[8]  Michael I. Jordan,et al.  Hierarchical Bayesian Nonparametric Models with Applications , 2008 .

[9]  Ramesh Nallapati,et al.  Labeled LDA: A supervised topic model for credit attribution in multi-labeled corpora , 2009, EMNLP.

[10]  David M. Blei,et al.  Supervised Topic Models , 2007, NIPS.

[11]  Michael I. Jordan,et al.  Bayesian Nonparametrics: Hierarchical Bayesian nonparametric models with applications , 2010 .

[12]  Hiroshi Nakagawa,et al.  Rethinking Collapsed Variational Bayes Inference for LDA , 2012, ICML.

[13]  Konstantinos Tsiptsis,et al.  Data Mining Techniques in CRM: Inside Customer Segmentation , 2010 .

[14]  Justin Grimmer An Introduction to Bayesian Inference via Variational Approximations , 2011, Political Analysis.

[15]  Jon D. McAuliffe,et al.  Variational Inference for Large-Scale Models of Discrete Choice , 2007, 0712.2526.

[16]  Tomoharu Iwata,et al.  Topic model for analyzing purchase data with price information , 2013, Data Mining and Knowledge Discovery.

[17]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine-mediated learning.

[18]  Michel Wedel,et al.  Challenges and opportunities in high-dimensional choice data analyses , 2008 .

[19]  Yee Whye Teh,et al.  On Smoothing and Inference for Topic Models , 2009, UAI.

[20]  Pradeep Chintagunta,et al.  Structural Workshop Paper - Discrete-Choice Models of Consumer Demand in Marketing , 2011, Mark. Sci..

[21]  Carl F. Mela,et al.  E-Customization , 2003 .

[22]  Tuck Siong Chung,et al.  Marketing Models of Service and Relationships , 2006 .

[23]  M. Wedel,et al.  Market Segmentation: Conceptual and Methodological Foundations , 1997 .

[24]  Adrian Corduneanu,et al.  Variational Bayesian Model Selection for Mixture Distributions , 2001 .

[25]  Roland T. Rust,et al.  My Mobile Music: An Adaptive Personalization System For Digital Audio Players , 2007 .

[26]  Ralf Schweizer,et al.  Database Marketing Analyzing And Managing Customers , 2016 .