Optimal transport and Skorokhod embedding
暂无分享,去创建一个
[1] H. Rost. The stopping distributions of a Markov process , 1971 .
[2] David Williams. Diffusions, Markov Processes and Martingales: Volume 2, Ito Calculus , 2000 .
[3] David Hobson,et al. ROBUST BOUNDS FOR FORWARD START OPTIONS , 2012 .
[4] Jan Ob. The Skorokhod embedding problem and its ospring , 2004 .
[5] Nizar Touzi,et al. Maximum Maximum of Martingales Given Marginals , 2013 .
[6] H. Thorisson,et al. Unbiased shifts of Brownian motion , 2011, 1112.5373.
[7] David Hobson,et al. Skorokhod embeddings, minimality and non-centred target distributions , 2003 .
[8] H. Soner,et al. Martingale optimal transport and robust hedging in continuous time , 2012, 1208.4922.
[9] Jan Oblój,et al. Robust Hedging of Double Touch Barrier Options , 2008, SIAM J. Financial Math..
[10] P. Vallois. Le probleme de Skorokhod sur IR: une approche avec le temps local , 1983 .
[11] H. Rost,et al. Skorokhod stopping times of minimal variance , 1976 .
[12] P. Meyer,et al. Probabilities and potential C , 1978 .
[13] J. Kiefer. Skorohod embedding of multivariate RV's, and the sample DF , 1972 .
[14] J. Azéma,et al. Une solution simple au probleme de Skorokhod , 1979 .
[15] J. R. Baxter,et al. Compactness of stopping times , 1977 .
[16] Alexander M. G. Cox,et al. Root's barrier: Construction, optimality and applications to variance options. , 2011, 1104.3583.
[17] Walter Schachermayer,et al. Characterization of optimal transport plans for the Monge-Kantorovich problem , 2007, 0711.1268.
[18] Samuel Kotz,et al. Advances in Probability Distributions with Given Marginals , 1991 .
[19] Mathias Beiglböck,et al. Model-independent bounds for option prices—a mass transport approach , 2011, Finance Stochastics.
[20] A. M. G. Cox. Extending Chacon-Walsh: Minimality and Generalised Starting Distributions , 2005 .
[21] W. Gangbo,et al. The geometry of optimal transportation , 1996 .
[22] M. Knott,et al. On Hoeffding-Fre´chet bounds and cyclic monotone relations , 1992 .
[23] M. Knott,et al. On the optimal mapping of distributions , 1984 .
[24] L. Rüschendorf. FréChet-Bounds and Their Applications , 1991 .
[25] Aleksandar Mijatovi'c,et al. An integral equation for Root's barrier and the generation of Brownian increments , 2013, 1309.5877.
[26] A. Pratelli,et al. On the sufficiency of c-cyclical monotonicity for optimality of transport plans , 2008 .
[27] Goran Peskir,et al. Embedding laws in diffusions by functions of time , 2012, 1201.5321.
[28] On optimality of c-cyclically monotone transference plans , 2010 .
[29] G. Burton. TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .
[30] Edwin A. Perkins,et al. The Cereteli-Davis Solution to the H1-Embedding Problem and an Optimal Embedding in Brownian Motion , 1986 .
[31] Bruno Bouchard,et al. Arbitrage and duality in nondominated discrete-time models , 2013, 1305.6008.
[32] Saul D. Jacka,et al. Doob's inequalities revisited: A maximal H1-embedding , 1988 .
[33] J. Jacod,et al. Sur un type de convergence intermédiaire entre la convergence en loi et la convergence en probabilité , 1981 .
[34] L. Ambrosio,et al. Existence and stability results in the L 1 theory of optimal transportation , 2003 .
[35] D. H. Root. The Existence of Certain Stopping Times on Brownian Motion , 1969 .
[36] Jan Ob lój. The Skorokhod embedding problem and its offspring ∗ , 2004 .
[37] W. Schachermayer,et al. A trajectorial interpretation of Doob's martingale inequalities , 2012, 1202.0447.
[38] F. Delbaen,et al. A general version of the fundamental theorem of asset pricing , 1994 .
[39] Nizar Touzi,et al. A Stochastic Control Approach to No-Arbitrage Bounds Given Marginals, with an Application to Lookback Options , 2013, 1401.3921.
[40] Walter Schachermayer,et al. A super-replication theorem in Kabanov’s model of transaction costs , 2006, Finance Stochastics.
[41] Catherine Doléans. Existence du processus croissant naturel associé à un potentiel de la classe (D) , 1968 .
[42] R. M. Loynes,et al. Stopping times on Brownian motion: Some properties of root's construction , 1970 .
[43] Marc Yor,et al. A definition and some characteristic properties of pseudo-stopping times , 2004, math/0406459.
[44] W. Schachermayer,et al. Duality for Borel measurable cost functions , 2008, 0807.1468.
[45] R. Rockafellar. Characterization of the subdifferentials of convex functions , 1966 .
[46] Joseph Najnudel,et al. A new kind of augmentation of filtrations , 2009, 0910.4959.
[47] L. Hedberg,et al. Function Spaces and Potential Theory , 1995 .
[48] Martingale Inequalities for the Maximum via Pathwise Arguments , 2014, 1409.6255.
[49] Walter Schachermayer,et al. Optimal and better transport plans , 2008, 0802.0646.
[50] Walter Schachermayer,et al. A General Duality Theorem for the Monge--Kantorovich Transport Problem , 2009, 0911.4347.
[51] A. Skorokhod,et al. Studies in the theory of random processes , 1966 .
[52] The distribution of Brownian motion in Rn at a natural stopping time , 1981 .
[53] Yan Dolinsky,et al. Martingale Optimal Transport in the Skorokhod Space , 2014, 1404.1516.
[54] H. Oberhauser,et al. Root's barrier, viscosity solutions of obstacle problems and reflected FBSDEs , 2013, 1301.3798.
[55] H. Soner,et al. Robust Hedging and Martingale Optimal Transport in Continuous Time , 2012 .
[56] Halil Mete Soner,et al. Robust hedging with proportional transaction costs , 2013, Finance Stochastics.
[57] David Hobson,et al. Robust hedging of the lookback option , 1998, Finance Stochastics.
[58] L. Rüschendorf. On c-optimal random variables , 1996 .
[59] P. Meyer. Convergence faible et compacité des temps d'arrêt, d'après Baxter et Chacón , 1978 .
[60] F. Hirsch. Peacocks and Associated Martingales, with Explicit Constructions , 2011 .
[61] Itrel Monroe,et al. On Embedding Right Continuous Martingales in Brownian Motion , 1972 .
[62] D. Hobson. The Skorokhod Embedding Problem and Model-Independent Bounds for Option Prices , 2011 .
[63] N. Touzi,et al. The maximum maximum of a martingale with given $\mathbf{n}$ marginals , 2012, 1203.6877.
[64] H. Kellerer. Duality theorems for marginal problems , 1984 .
[65] L. Rüschendorf. Optimal solutions of multivariate coupling problems , 1995 .