Optimal transport and Skorokhod embedding

The Skorokhod embedding problem is to represent a given probability as the distribution of Brownian motion at a chosen stopping time. Over the last 50 years this has become one of the important classical problems in probability theory and a number of authors have constructed solutions with particular optimality properties. These constructions employ a variety of techniques ranging from excursion theory to potential and PDE theory and have been used in many different branches of pure and applied probability. We develop a new approach to Skorokhod embedding based on ideas and concepts from optimal mass transport. In analogy to the celebrated article of Gangbo and McCann on the geometry of optimal transport, we establish a geometric characterization of Skorokhod embeddings with desired optimality properties. This leads to a systematic method to construct optimal embeddings. It allows us, for the first time, to derive all known optimal Skorokhod embeddings as special cases of one unified construction and leads to a variety of new embeddings. While previous constructions typically used particular properties of Brownian motion, our approach applies to all sufficiently regular Markov processes.

[1]  H. Rost The stopping distributions of a Markov process , 1971 .

[2]  David Williams Diffusions, Markov Processes and Martingales: Volume 2, Ito Calculus , 2000 .

[3]  David Hobson,et al.  ROBUST BOUNDS FOR FORWARD START OPTIONS , 2012 .

[4]  Jan Ob The Skorokhod embedding problem and its ospring , 2004 .

[5]  Nizar Touzi,et al.  Maximum Maximum of Martingales Given Marginals , 2013 .

[6]  H. Thorisson,et al.  Unbiased shifts of Brownian motion , 2011, 1112.5373.

[7]  David Hobson,et al.  Skorokhod embeddings, minimality and non-centred target distributions , 2003 .

[8]  H. Soner,et al.  Martingale optimal transport and robust hedging in continuous time , 2012, 1208.4922.

[9]  Jan Oblój,et al.  Robust Hedging of Double Touch Barrier Options , 2008, SIAM J. Financial Math..

[10]  P. Vallois Le probleme de Skorokhod sur IR: une approche avec le temps local , 1983 .

[11]  H. Rost,et al.  Skorokhod stopping times of minimal variance , 1976 .

[12]  P. Meyer,et al.  Probabilities and potential C , 1978 .

[13]  J. Kiefer Skorohod embedding of multivariate RV's, and the sample DF , 1972 .

[14]  J. Azéma,et al.  Une solution simple au probleme de Skorokhod , 1979 .

[15]  J. R. Baxter,et al.  Compactness of stopping times , 1977 .

[16]  Alexander M. G. Cox,et al.  Root's barrier: Construction, optimality and applications to variance options. , 2011, 1104.3583.

[17]  Walter Schachermayer,et al.  Characterization of optimal transport plans for the Monge-Kantorovich problem , 2007, 0711.1268.

[18]  Samuel Kotz,et al.  Advances in Probability Distributions with Given Marginals , 1991 .

[19]  Mathias Beiglböck,et al.  Model-independent bounds for option prices—a mass transport approach , 2011, Finance Stochastics.

[20]  A. M. G. Cox Extending Chacon-Walsh: Minimality and Generalised Starting Distributions , 2005 .

[21]  W. Gangbo,et al.  The geometry of optimal transportation , 1996 .

[22]  M. Knott,et al.  On Hoeffding-Fre´chet bounds and cyclic monotone relations , 1992 .

[23]  M. Knott,et al.  On the optimal mapping of distributions , 1984 .

[24]  L. Rüschendorf FréChet-Bounds and Their Applications , 1991 .

[25]  Aleksandar Mijatovi'c,et al.  An integral equation for Root's barrier and the generation of Brownian increments , 2013, 1309.5877.

[26]  A. Pratelli,et al.  On the sufficiency of c-cyclical monotonicity for optimality of transport plans , 2008 .

[27]  Goran Peskir,et al.  Embedding laws in diffusions by functions of time , 2012, 1201.5321.

[28]  On optimality of c-cyclically monotone transference plans , 2010 .

[29]  G. Burton TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .

[30]  Edwin A. Perkins,et al.  The Cereteli-Davis Solution to the H1-Embedding Problem and an Optimal Embedding in Brownian Motion , 1986 .

[31]  Bruno Bouchard,et al.  Arbitrage and duality in nondominated discrete-time models , 2013, 1305.6008.

[32]  Saul D. Jacka,et al.  Doob's inequalities revisited: A maximal H1-embedding , 1988 .

[33]  J. Jacod,et al.  Sur un type de convergence intermédiaire entre la convergence en loi et la convergence en probabilité , 1981 .

[34]  L. Ambrosio,et al.  Existence and stability results in the L 1 theory of optimal transportation , 2003 .

[35]  D. H. Root The Existence of Certain Stopping Times on Brownian Motion , 1969 .

[36]  Jan Ob lój The Skorokhod embedding problem and its offspring ∗ , 2004 .

[37]  W. Schachermayer,et al.  A trajectorial interpretation of Doob's martingale inequalities , 2012, 1202.0447.

[38]  F. Delbaen,et al.  A general version of the fundamental theorem of asset pricing , 1994 .

[39]  Nizar Touzi,et al.  A Stochastic Control Approach to No-Arbitrage Bounds Given Marginals, with an Application to Lookback Options , 2013, 1401.3921.

[40]  Walter Schachermayer,et al.  A super-replication theorem in Kabanov’s model of transaction costs , 2006, Finance Stochastics.

[41]  Catherine Doléans Existence du processus croissant naturel associé à un potentiel de la classe (D) , 1968 .

[42]  R. M. Loynes,et al.  Stopping times on Brownian motion: Some properties of root's construction , 1970 .

[43]  Marc Yor,et al.  A definition and some characteristic properties of pseudo-stopping times , 2004, math/0406459.

[44]  W. Schachermayer,et al.  Duality for Borel measurable cost functions , 2008, 0807.1468.

[45]  R. Rockafellar Characterization of the subdifferentials of convex functions , 1966 .

[46]  Joseph Najnudel,et al.  A new kind of augmentation of filtrations , 2009, 0910.4959.

[47]  L. Hedberg,et al.  Function Spaces and Potential Theory , 1995 .

[48]  Martingale Inequalities for the Maximum via Pathwise Arguments , 2014, 1409.6255.

[49]  Walter Schachermayer,et al.  Optimal and better transport plans , 2008, 0802.0646.

[50]  Walter Schachermayer,et al.  A General Duality Theorem for the Monge--Kantorovich Transport Problem , 2009, 0911.4347.

[51]  A. Skorokhod,et al.  Studies in the theory of random processes , 1966 .

[52]  The distribution of Brownian motion in Rn at a natural stopping time , 1981 .

[53]  Yan Dolinsky,et al.  Martingale Optimal Transport in the Skorokhod Space , 2014, 1404.1516.

[54]  H. Oberhauser,et al.  Root's barrier, viscosity solutions of obstacle problems and reflected FBSDEs , 2013, 1301.3798.

[55]  H. Soner,et al.  Robust Hedging and Martingale Optimal Transport in Continuous Time , 2012 .

[56]  Halil Mete Soner,et al.  Robust hedging with proportional transaction costs , 2013, Finance Stochastics.

[57]  David Hobson,et al.  Robust hedging of the lookback option , 1998, Finance Stochastics.

[58]  L. Rüschendorf On c-optimal random variables , 1996 .

[59]  P. Meyer Convergence faible et compacité des temps d'arrêt, d'après Baxter et Chacón , 1978 .

[60]  F. Hirsch Peacocks and Associated Martingales, with Explicit Constructions , 2011 .

[61]  Itrel Monroe,et al.  On Embedding Right Continuous Martingales in Brownian Motion , 1972 .

[62]  D. Hobson The Skorokhod Embedding Problem and Model-Independent Bounds for Option Prices , 2011 .

[63]  N. Touzi,et al.  The maximum maximum of a martingale with given $\mathbf{n}$ marginals , 2012, 1203.6877.

[64]  H. Kellerer Duality theorems for marginal problems , 1984 .

[65]  L. Rüschendorf Optimal solutions of multivariate coupling problems , 1995 .