Algorithms and Techniques for Conquering Extreme Physical Variation in Bottom-Up Nanoscale Systems

Nanowire building blocks provide a promising path to small feature size and thus the ability to more densely pack logic. However, the small feature size and novel, bottom-up manufacturing process will exhibit extreme variation and produce many devices that operate outside acceptable operating ranges. One-mapping-fits-all, prefabrication assignment of logical functions to physical transistors that exhibit high threshold variation will not work—combining the wide range of physical variation in transistor threshold voltage with the wide range of fanouts in the design produces an unworkably large composite range of possible delays. Nonetheless, by carefully matching the fanout of each net to the physical threshold voltages of devices after fabrication, it is possible to reduce the net range of path delays sufficiently to achieve high system yield. Characterization of the complete threshold voltage distribution present in the system can be measured at a rate of 108 resources per second by augmenting the system with voltage comparison mechanisms. By adding a modest amount of extra resources, we achieve 100% yield for systems built out of devices with 38% variation, the ITRS prediction for threshold variation in 5 nm transistors. Moreover, for these systems, we maintain delay, energy and area close to the variation-free nominal case. What’s more, there is only a 10% overhead when the measurement precision is limited to ten discrete threshold voltage values.

[1]  Zhiyong Fan,et al.  Structures and Electrical Properties of Ag – Tetracyanoquinodimethane Organometallic Nanowires , 2005 .

[2]  N. Melosh,et al.  Ultrahigh-Density Nanowire Lattices and Circuits , 2003, Science.

[3]  André DeHon,et al.  Seven strategies for tolerating highly defective fabrication , 2005, IEEE Design & Test of Computers.

[4]  Wei Lu,et al.  Si/a-Si core/shell nanowires as nonvolatile crossbar switches. , 2008, Nano letters.

[5]  A. Asenov,et al.  Intrinsic parameter fluctuations in decananometer MOSFETs introduced by gate line edge roughness , 2003 .

[6]  David Blaauw,et al.  Ultralow-voltage, minimum-energy CMOS , 2006, IBM J. Res. Dev..

[7]  D. Strukov,et al.  CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices , 2005 .

[8]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[9]  Dongmok Whang,et al.  Large-scale hierarchical organization of nanowire arrays for integrated nanosystems , 2003 .

[10]  T. J. Walls,et al.  Nanoscale silicon MOSFETs: A theoretical study , 2003 .

[11]  Charles M. Lieber,et al.  Directed assembly of one-dimensional nanostructures into functional networks. , 2001, Science.

[12]  ZVI GALIL,et al.  Efficient algorithms for finding maximum matching in graphs , 1986, CSUR.

[13]  Erik H. Anderson,et al.  Nanoscale molecular-switch devices fabricated by imprint lithography , 2003 .

[14]  Charles M Lieber,et al.  Large-area blown bubble films of aligned nanowires and carbon nanotubes. , 2007, Nature nanotechnology.

[15]  André DeHon,et al.  Stochastic assembly of sublithographic nanoscale interfaces , 2003 .

[16]  Charles M. Lieber,et al.  Diameter-controlled synthesis of single-crystal silicon nanowires , 2001 .

[17]  Carl Ebeling,et al.  PathFinder: A Negotiation-Based Performance-Driven Router for FPGAs , 1995, Third International ACM Symposium on Field-Programmable Gate Arrays.

[18]  Charles M. Lieber,et al.  Encoding Electronic Properties by Synthesis of Axial Modulation-Doped Silicon Nanowires , 2005, Science.

[19]  R. Stanley Williams,et al.  CMOS-like logic in defective, nanoscale crossbars , 2004 .

[20]  Wei Lu,et al.  Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures , 2004, Nature.

[21]  André DeHon,et al.  Nanowire-based programmable architectures , 2005, JETC.

[22]  Charles M. Lieber,et al.  Synthetic Control of the Diameter and Length of Single Crystal Semiconductor Nanowires , 2001 .

[23]  J. F. Stoddart,et al.  Nanoscale molecular-switch crossbar circuits , 2003 .

[24]  Silvija Gradecak,et al.  General synthesis of manganese-doped II-VI and III-V semiconductor nanowires. , 2005, Nano letters.

[25]  Charles M Lieber,et al.  Ultrathin Au nanowires and their transport properties. , 2008, Journal of the American Chemical Society.

[26]  A. Asenov Random dopant induced threshold voltage lowering and fluctuations in sub-0.1 /spl mu/m MOSFET's: A 3-D "atomistic" simulation study , 1998 .

[27]  Charles M. Lieber,et al.  Epitaxial core–shell and core–multishell nanowire heterostructures , 2002, Nature.

[28]  Garrett S. Rose,et al.  Inversion schemes for sublithographic programmable logic arrays , 2009, IET Comput. Digit. Tech..

[29]  T. Hiramoto,et al.  Channel width and length dependence in Si nanocrystal memories with ultra-nanoscale channel , 2005, IEEE Transactions on Nanotechnology.

[30]  George Varghese,et al.  HSRA: high-speed, hierarchical synchronous reconfigurable array , 1999, FPGA '99.

[31]  Joshua E. Goldberger,et al.  SEMICONDUCTOR NANOWIRES AND NANOTUBES , 2004 .

[32]  A. Asenov,et al.  Intrinsic threshold voltage fluctuations in decanano MOSFETs due to local oxide thickness variations , 2002 .

[33]  Dmitri B. Strukov,et al.  A reconfigurable architecture for hybrid CMOS/Nanodevice circuits , 2006, FPGA '06.

[34]  André DeHon,et al.  VMATCH: Using logical variation to counteract physical variation in bottom-up, nanoscale systems , 2009, 2009 International Conference on Field-Programmable Technology.

[35]  T. Cao,et al.  Logic Gates and Computation from Assembled Nanowire Building Blocks , 2001 .

[36]  Jason Cong,et al.  Performance-driven mapping for CPLD architectures , 2001, FPGA '01.

[37]  Jan M. Rabaey,et al.  Digital Integrated Circuits , 2003 .

[38]  Dongmok Whang,et al.  Nanolithography Using Hierarchically Assembled Nanowire Masks , 2003 .

[39]  J. von Neumann,et al.  Probabilistic Logic and the Synthesis of Reliable Organisms from Unreliable Components , 1956 .