Supporting Performance Awareness in Autonomous Ensembles

The ASCENS project works with systems of self-aware, self-adaptive and self-expressive ensembles. Performance awareness represents a concern that cuts across multiple aspects of such systems, from the techniques to acquire performance information by monitoring, to the methods of incorporating such information into the design making and decision making processes. This chapter provides an overview of five project contributions – performance monitoring based on the DiSL instrumentation framework, measurement evaluation using the SPL formalism, performance modeling with fluid semantics, adaptation with DEECo and design with IRM-SA – all in the context of the cloud case study.

[1]  Qing Pan 13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems - Cover , 2005 .

[2]  Roberto Bruni,et al.  Reconciling White-Box and Black-Box Perspectives on Behavioral Self-adaptation , 2015, The ASCENS Approach.

[3]  Jane Hillston,et al.  Fluid flow approximation of PEPA models , 2005, Second International Conference on the Quantitative Evaluation of Systems (QEST'05).

[4]  P. Buchholz Exact and ordinary lumpability in finite Markov chains , 1994, Journal of Applied Probability.

[5]  Petr Tuma,et al.  Capturing performance assumptions using stochastic performance logic , 2012, ICPE '12.

[6]  H. Hermanns,et al.  Syntax , Semantics , Equivalences , and Axioms for MTIPP y , 1994 .

[7]  Petr Tuma,et al.  Performance Regression Unit Testing: A Case Study , 2013, EPEW.

[8]  Stephen Gilmore,et al.  Rigorous Graphical Modelling of Movement in Collective Adaptive Systems , 2016, ISoLA.

[9]  Walter Binder,et al.  Introduction to dynamic program analysis with DiSL , 2013, ICPE '13.

[10]  Franco Zambonelli,et al.  ASCENS: Engineering Autonomic Service-Component Ensembles , 2011, FMCO.

[11]  Maliha S. Nash,et al.  Handbook of Parametric and Nonparametric Statistical Procedures , 2001, Technometrics.

[12]  Ilias Gerostathopoulos,et al.  The Invariant Refinement Method , 2015, The ASCENS Approach.

[13]  Welch Bl THE GENERALIZATION OF ‘STUDENT'S’ PROBLEM WHEN SEVERAL DIFFERENT POPULATION VARLANCES ARE INVOLVED , 1947 .

[14]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[15]  Vincent Massol,et al.  JUnit in Action , 2003 .

[16]  Y. Iwasa,et al.  Aggregation in model ecosystems. I. Perfect aggregation , 1987 .

[17]  Jeffrey S. Vetter,et al.  Asserting Performance Expectations , 2002, ACM/IEEE SC 2002 Conference (SC'02).

[18]  M. Aoki Control of large-scale dynamic systems by aggregation , 1968 .

[19]  Allan Clark,et al.  State-Aware Performance Analysis with eXtended Stochastic Probes , 2008, EPEW.

[20]  Elisa Bertino,et al.  ECOOP 2000 — Object-Oriented Programming , 2000, Lecture Notes in Computer Science.

[21]  Petr Tuma,et al.  DiSL: an extensible language for efficient and comprehensive dynamic program analysis , 2012, DSAL '12.

[22]  Nora Koch,et al.  Software Engineering for Collective Autonomic Systems , 2015, Lecture Notes in Computer Science.

[23]  Ilias Gerostathopoulos,et al.  Design of ensemble-based component systems by invariant refinement , 2013, CBSE '13.

[24]  Lubomír Bulej,et al.  SPL : Unit Testing Performance , 2014 .

[25]  Anthony V. Fiacco,et al.  Mathematical programming study 21 , 1985, Mathematical programming.

[26]  Ian Stark,et al.  The Continuous pi-Calculus: A Process Algebra for Biochemical Modelling , 2008, CMSB.

[27]  M. Mavrovouniotis,et al.  Simplification of Mathematical Models of Chemical Reaction Systems. , 1998, Chemical reviews.

[28]  Mirco Tribastone,et al.  A unified framework for differential aggregations in Markovian process algebra , 2015, J. Log. Algebraic Methods Program..

[29]  Francesco Tiezzi,et al.  The Autonomic Cloud , 2015, The ASCENS Approach.

[30]  Matthias Hauswirth,et al.  Producing wrong data without doing anything obviously wrong! , 2009, ASPLOS.

[31]  Bryan Cantrill,et al.  Dynamic Instrumentation of Production Systems , 2004, USENIX Annual Technical Conference, General Track.

[32]  Jørgen Lindskov Knudsen ECOOP 2001 — Object-Oriented Programming , 2001, Lecture Notes in Computer Science.

[33]  Petr Tuma,et al.  Performance Awareness in Component Systems: Vision Paper , 2012, 2012 IEEE 36th Annual Computer Software and Applications Conference Workshops.

[34]  Sharon E. Perl Performance assertion checking , 1993, SOSP '93.

[35]  Mirco Tribastone,et al.  Lumpability of fluid models with heterogeneous agent types , 2013, 2013 43rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).

[36]  Luca Cardelli,et al.  On process rate semantics , 2008, Theor. Comput. Sci..

[37]  Petar Tahchiev JUnit in action , 2011 .

[38]  Petr Tuma,et al.  Automated detection of performance regressions: the mono experience , 2005, 13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems.

[39]  Thomas Gabor,et al.  Reasoning and Learning for Awareness and Adaptation , 2015, The ASCENS Approach.

[40]  William G. Griswold,et al.  An Overview of AspectJ , 2001, ECOOP.

[41]  Franco Zambonelli,et al.  The Ensemble Development Life Cycle and Best Practices for Collective Autonomic Systems , 2015, The ASCENS Approach.

[42]  Petr Tuma,et al.  Benchmark Precision and Random Initial State , 2005 .

[43]  Luca Bortolussi,et al.  Fluid Model Checking , 2012, CONCUR.

[44]  Mirco Tribastone,et al.  Exact fluid lumpability in Markovian process algebra , 2014, Theor. Comput. Sci..

[45]  Jane Hillston,et al.  Bio-PEPA: A framework for the modelling and analysis of biological systems , 2009, Theor. Comput. Sci..

[46]  Tomás Bures,et al.  Adaptive deployment in ad-hoc systems using emergent component ensembles: vision paper , 2013, ICPE '13.

[47]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[48]  Shigeru Chiba,et al.  Load-Time Structural Reflection in Java , 2000, ECOOP.

[49]  Antonín Steinhauser,et al.  Utilizing Performance Unit Tests To Increase Performance Awareness , 2015, ICPE.

[50]  Mirco Tribastone,et al.  Tackling continuous state-space explosion in a Markovian process algebra , 2014, Theor. Comput. Sci..

[51]  Mieke Massink,et al.  The SCEL Language: Design, Implementation, Verification , 2015, The ASCENS Approach.

[52]  Stephen Gilmore,et al.  Scalable Differential Analysis of Process Algebra Models , 2012, IEEE Transactions on Software Engineering.

[53]  Amin Vahdat,et al.  Pip: Detecting the Unexpected in Distributed Systems , 2006, NSDI.

[54]  Ilias Gerostathopoulos,et al.  DEECO: an ensemble-based component system , 2013, CBSE '13.

[55]  Petr Tuma,et al.  Towards Performance-Aware Engineering of Autonomic Component Ensembles , 2014, ISoLA.

[56]  Samuel Kounev,et al.  Self-adaptive workload classification and forecasting for proactive resource provisioning , 2013, ICPE '13.

[57]  Jeremy T. Bradley,et al.  A fluid analysis framework for a Markovian process algebra , 2010, Theor. Comput. Sci..

[58]  Frank D. Valencia,et al.  Formal Methods for Components and Objects , 2002, Lecture Notes in Computer Science.