Improved convergence theorems of multisplitting methods for the linear complementarity problem

In 1999, Bai (1999) [1] studied the convergence of the multisplitting methods for solving the large sparse linear complementarity problems (LCP) presented by Machida et al. (1995) [22] when the system matrix is an H"+-matrix. In this paper, based on the multisplitting methods by Bai, we get a weaker convergent result for solving the linear complementarity problem when the system matrix is an H"+-matrices. Moreover, we drew a map show that our convergence theories extend the scope of multisplitting methods by Bai in applications.

[1]  Masao Fukushima,et al.  A multisplitting method for symmetric linear complementarity problems , 1995 .

[2]  Li-Li Zhang,et al.  Two-step modulus-based matrix splitting iteration method for linear complementarity problems , 2011, Numerical Algorithms.

[3]  G. Dantzig,et al.  COMPLEMENTARY PIVOT THEORY OF MATHEMATICAL PROGRAMMING , 1968 .

[4]  David J. Evans,et al.  Matrix Multisplitting Methods with Applications to Linear Complementarity Problems∶ Parallel Asynchronous Methods , 2002, Int. J. Comput. Math..

[5]  Alfredo N. Iusem On the convergence of iterative methods for symmetric linear complementarity problems , 1993, Math. Program..

[6]  C. Cryer The Solution of a Quadratic Programming Problem Using Systematic Overrelaxation , 1971 .

[7]  P. Tseng,et al.  On the convergence of a matrix splitting algorithm for the symmetric monotone linear complementarity problem , 1991 .

[8]  Zhong-Zhi Bai,et al.  Modulus‐based matrix splitting iteration methods for linear complementarity problems , 2010, Numer. Linear Algebra Appl..

[9]  C. E. Lemke,et al.  Bimatrix Equilibrium Points and Mathematical Programming , 1965 .

[10]  A. Frommer,et al.  Convergence of relaxed parallel multisplitting methods , 1989 .

[11]  白中治 ON THE MONOTONE CONVERGENCE OF THE PROJECTED ITERATION METHODS FOR LINEAR COMPLEMENTARITY PROBLEMS , 1996 .

[12]  K. Fan Topological proofs for certain theorems on matrices with non-negative elements , 1958 .

[13]  David J. Evans,et al.  Matrix multisplitting relaxation methods for linear complementarity problems , 1997, Int. J. Comput. Math..

[14]  Li-Li Zhang,et al.  Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems , 2012, Numerical Algorithms.

[15]  Li-Tao Zhang,et al.  The weaker convergence of modulus-based synchronous multisplitting multi-parameters methods for linear complementarity problems , 2014, Comput. Math. Appl..

[16]  Li-Li Zhang,et al.  Improved convergence theorems of modulus-based matrix splitting iteration methods for linear complementarity problems , 2013, Appl. Math. Lett..

[17]  J. Pang Necessary and sufficient conditions for the convergence of iterative methods for the linear complementarity problem , 1984 .

[18]  O. Mangasarian Solution of symmetric linear complementarity problems by iterative methods , 1977 .

[19]  R. S. Sacher,et al.  On the solution of large, structured linear complementarity problems: The block partitioned case , 1977 .

[20]  Zhong-Zhi Bai,et al.  On the Convergence of the Multisplitting Methods for the Linear Complementarity Problem , 1999, SIAM J. Matrix Anal. Appl..