Multi-Scale Multiphase Modeling of Transport Phenomena in Spray-Drying Processes

Spray drying is an extensively used technology in process engineering for receiving small particles by rapid moisture evaporation from a spray of droplets. This contribution summarizes achievements and results of the comprehensive scientific research on multi-scale multiphase modeling of transport phenomena in spray-drying processes undertaken by our research group: (1) study of particle formation on the scale of an individual droplet; (2) modeling and simulation of droplet–droplet and particle–particle collisions in a spray; (3) study of gas-spray mixing; (4) 2D and 3D study of spray drying by an innovative multi-scale simulation tool coupled to a commercial CFD software. The proposed multi-scale multiphase model of transport phenomena in a spray-drying process has been developed based on a thorough analysis of previously published experimental and theoretical works. The content of this paper will be useful for both academia and industry; e.g., pharmaceutical, biotechnology, chemical, ceramics, materials, nutrition, and other applications of spray drying.

[1]  S. A. Morsi,et al.  An investigation of particle trajectories in two-phase flow systems , 1972, Journal of Fluid Mechanics.

[2]  F. Carlsson,et al.  Large eddy simulation of unsteady turbulent flow in a semi-industrial size spray dryer , 2013 .

[3]  W. R. Marshall,et al.  Evaporation from drops containing dissolved solids , 1960 .

[4]  C. Brooks Computer simulation of liquids , 1989 .

[5]  Avi Levy,et al.  Spray drying modelling based on advanced droplet drying kinetics , 2010 .

[6]  R. Mondragón,et al.  Modeling of Drying Curves of Silica Nanofluid Droplets Dried in an Acoustic Levitator Using the Reaction Engineering Approach (REA) Model , 2013 .

[7]  Avi Levy,et al.  Mathematical Modeling of Drying of Liquid/Solid Slurries in Steady State One-Dimensional Flow , 1995 .

[8]  Pawel Kosinski,et al.  Extension of the hard-sphere particle-wall collision model to account for particle deposition. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  B. Hoomans Granular dynamics of gas-solid two-phase flows , 2000 .

[10]  M. Woo,et al.  Particle drying and crystallization characteristics in a low velocity concurrent pilot scale spray drying tower , 2012 .

[11]  Avi Levy,et al.  Heat and Mass Transfer and Breakage of Particles in Drying Processes , 2009 .

[12]  Avi Levy,et al.  Three-Dimensional Spray-Drying Model Based on Comprehensive Formulation of Drying Kinetics , 2012 .

[13]  FG Frank Kieviet,et al.  Modelling quality in spray drying , 1997 .

[14]  Jie-min Zhan,et al.  Dense particulate flow model on unstructured mesh , 2006 .

[15]  Avi Levy,et al.  Drying of Droplet Containing Insoluble Nanoscale Particles: Numerical Simulations and Parametric Study , 2013 .

[16]  Mauricio Marin,et al.  Efficient algorithms for many-body hard particle molecular dynamics , 1993 .

[17]  David F. Fletcher,et al.  Simulation of the agglomeration in a spray using Lagrangian particle tracking , 2004 .

[18]  A. Levy,et al.  Modeling of Droplet Drying in Spray Chambers Using 2D and 3D Computational Fluid Dynamics , 2009 .

[19]  Avi Levy,et al.  Modelling of particle breakage during drying , 2008 .

[20]  Yoshinobu Morikawa,et al.  Numerical simulation of gas-solid two-phase flow in a two-dimensional horizontal channel , 1987 .

[21]  A. Levy,et al.  Probabilistic hard-sphere model of binary particle–particle interactions in multiphase flow of spray dryers , 2012 .

[22]  C. Lun,et al.  Numerical simulation of dilute turbulent gas-solid flows in horizontal channels , 1997 .

[23]  M. Goldschmidt,et al.  Hydrodynamic Modelling of Fluidised Bed Spray Granulation , 2001 .

[24]  D. Feakins,et al.  The thermodynamics of solutions , 1989 .

[25]  B. Oesterlé,et al.  Simulation of particle-to-particle interactions in gas solid flows , 1993 .

[26]  Maksim Mezhericher,et al.  Modeling of Particle Pneumatic Conveying Using DEM and DPM Methods , 2009 .

[27]  Simon Lo,et al.  Application of computational fluid dynamics to spray drying , 2005 .

[28]  Christopher E. Brennen,et al.  Computer simulation of granular shear flows , 1985, Journal of Fluid Mechanics.

[29]  Ingmar Nopens,et al.  Mechanistic modelling of the drying behaviour of single pharmaceutical granules. , 2012, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[30]  Liang-Shih Fan,et al.  Principles of gas-solid flows , 1998 .

[31]  Thomas Esch,et al.  A stochastic particle-particle collision model for dense gas-particle flows implemented in the Lagrangian solver of ANSYS CFX and its validation , 2007 .

[32]  Avi Levy,et al.  Modelling the morphological evolution of nanosuspension droplet in constant-rate drying stage , 2011 .

[33]  Rudolf Eggers,et al.  Extraction of spray particles with supercritical fluids in a two‐phase flow , 1996 .

[34]  Mirko Peglow,et al.  Continuous species transport and population balance models for first drying stage of nanosuspension droplets , 2012 .

[35]  A. C. Hoffmann,et al.  An extension of the hard-sphere particle–particle collision model to study agglomeration , 2010 .

[36]  C. J. King,et al.  Volatiles loss during atomization in spray drying , 1980 .

[37]  Some fundamental aspects of spray drying , 1975 .

[38]  David F. Fletcher,et al.  What is important in the simulation of spray dryer performance and how do current CFD models perform , 2006 .

[39]  Xiao Dong Chen,et al.  Air drying of milk droplet under constant and time‐dependent conditions , 2005 .

[40]  Avi Levy,et al.  Droplet–Droplet Interactions in Spray Drying by Using 2D Computational Fluid Dynamics , 2008 .

[41]  W. E. Ranz,et al.  Evaporation from drops , 1952 .

[42]  J. Kuipers,et al.  Hydrodynamic modelling of dense gas-fluidised beds: comparison and validation of 3D discrete particle and continuum models , 2004 .

[43]  Numerical Simulation of the Effects of Block Height on the Gas-Solid Flow in a Fuel-Rich/Lean Burner by the Hard-Sphere Model , 2010 .

[44]  Christopher J. Rutland,et al.  A new droplet collision algorithm , 2000 .

[45]  W. Marshall,et al.  The rates of evaporation of sprays , 1968 .

[46]  李强,et al.  DROPLET COLLISION AND COALESCENCE MODEL , 2006 .

[47]  V. Kumaran,et al.  Dense granular flow down an inclined plane: A comparison between the hard particle model and soft particle simulations , 2010 .

[48]  David F. Fletcher,et al.  Scale-adaptive simulation (SAS) modelling of a pilot-scale spray dryer , 2009 .

[49]  Jinghai Li,et al.  Particle-motion-resolved discrete model for simulating gas–solid fluidization , 1999 .

[50]  J. V. D. Lijn,et al.  Simulation of heat and mass transfer in spray drying , 1976 .

[51]  W. Gauvin,et al.  Heat and mass transfer in spray drying , 1960 .

[52]  Y. Tsuji,et al.  Cluster patterns in circulating fluidized beds predicted by numerical simulation (discrete particle model versus two-fluid model) , 1998 .

[53]  Th. Frank,et al.  NUMERICAL SIMULATION AND EXPERIMENTAL INVESTIGATION OF A GAS-SOLID TWO-PHASE FLOW IN A HORIZONTAL CHANNEL , 1993 .

[54]  Dimitri Gidaspow,et al.  Prediction of particle motion in a two-dimensional bubbling fluidized bed using discrete hard-sphere model , 2005 .

[55]  Lixing Zhou,et al.  Theory and numerical modeling of turbulent gas-particle flows and combustion , 1993 .

[56]  G. Harpole Droplet Evaporation in High Temperature Environments , 1981 .

[57]  Arun S. Mujumdar,et al.  A comparative study of a spray dryer with rotary disc atomizer and pressure nozzle using computational fluid dynamic simulations , 2006 .

[58]  X. Chen,et al.  Modified Biot Number in the Context of Air Drying of Small Moist Porous Objects , 2005 .

[59]  Avi Levy,et al.  Theoretical Drying Model of Single Droplets Containing Insoluble or Dissolved Solids , 2007 .

[60]  W. H. Gauvin,et al.  Basic concepts of spray dryer design , 1976 .

[61]  Liping Liu THEORY OF ELASTICITY , 2012 .

[62]  Jam Hans Kuipers,et al.  Hydrodynamic modelling of dense gas-fluidised beds: Comparison of the kinetic theory of granular flow with 3D hard-sphere discrete particle simulations , 2002 .

[63]  B. Alder,et al.  Studies in Molecular Dynamics. I. General Method , 1959 .

[64]  David F. Fletcher,et al.  Spray drying of food ingredients and applications of CFD in spray drying , 2001 .

[65]  Maksim Mezhericher Theoretical Modelling of Spray Drying Processes , 2011 .

[66]  Aibing Yu,et al.  Simulation of Gas-Solid Flow in Vertical Pipe by Hard-Sphere Model , 2005 .

[67]  C. J. Mumford,et al.  A receding interface model for the drying of slurry droplets , 1986 .

[68]  B. Alder,et al.  Phase Transition for a Hard Sphere System , 1957 .

[69]  Ariel R. Muliadi,et al.  Spatially resolved characteristics of pharmaceutical sprays , 2012 .

[70]  J. Kuipers,et al.  Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: A hard-sphere approach. , 1996 .

[71]  J.A.M. Kuipers,et al.  Gas-particle interactions in dense gas-fluidised beds , 2003 .

[72]  C. Anandharamakrishnan,et al.  Computational fluid dynamics (CFD) applications in spray drying of food products , 2010 .

[73]  A. Boersen Spray drying technology. , 1990 .

[74]  Experimental investigation and simulation of gas–liquid–liquid reactive extraction process for the production of hydrogen peroxide , 2005 .

[75]  A. Levy,et al.  Three-dimensional modelling of pneumatic drying process , 2010 .

[76]  Qiang Li,et al.  Droplet collision and coalescence model , 2006 .

[77]  N. Amundson,et al.  A model for evaporation of a multicomponent droplet , 1973 .

[78]  M. Sommerfeld,et al.  Multiphase Flows with Droplets and Particles , 2011 .