The Maximum Entropy Production Principle: Its Theoretical Foundations and Applications to the Earth System

The Maximum Entropy Production (MEP) principle has been remarkably successful in producing accurate predictions for non-equilibrium states. We argue that this is because the MEP principle is an effective inference procedure that produces the best predictions from the available information. Since all Earth system processes are subject to the conservation of energy, mass and momentum, we argue that in practical terms the MEP principle should be applied to Earth system processes in terms of the already established framework of non-equilibrium thermodynamics, with the assumption of local thermodynamic equilibrium at the appropriate scales.

[1]  A. Caticha Information and Entropy , 2007, 0710.1068.

[2]  A. Kleidon Erratum to: Non-equilibrium thermodynamics and maximum entropy production in the earth system: Applications and implications , 2009, Naturwissenschaften.

[3]  E. T. Jaynes,et al.  Where do we Stand on Maximum Entropy , 1979 .

[4]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[5]  G. Paltridge,et al.  The steady‐state format of global climate , 1978 .

[6]  Gabriela Koreisová,et al.  Scientific Papers , 1997, Nature.

[7]  Ariel Caticha,et al.  From Information Geometry to Newtonian Dynamics , 2007, 0710.1071.

[8]  L. M. Martyusheva,et al.  Maximum entropy production principle in physics , chemistry and biology , 2006 .

[9]  J. Willard Gibbs,et al.  The scientific papers of J. Willard Gibbs , 1907 .

[10]  R. Dewar Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states , 2000, cond-mat/0005382.

[11]  Ralph D. Lorenz,et al.  Non-equilibrium thermodynamics and the production of entropy : life, earth, and beyond , 2005 .

[12]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[13]  Ralph D. Lorenz,et al.  Titan, Mars and Earth : Entropy production by latitudinal heat transport , 2001 .

[14]  A. Jellinek,et al.  Effects of spatially varying roof cooling on thermal convection at high Rayleigh number in a fluid with a strongly temperature-dependent viscosity , 2009, Journal of Fluid Mechanics.

[15]  R. Ulanowicz,et al.  Life and the production of entropy , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[16]  Ralph D. Lorenz,et al.  Planets, life and the production of entropy , 2002, International Journal of Astrobiology.

[17]  Jatin Narula,et al.  Maximum entropy production allows a simple representation of heterogeneity in semiarid ecosystems , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[18]  J. W. Gibbs,et al.  Scientific Papers , 2002, Molecular Imaging and Biology.

[19]  M. Tribus,et al.  Probability theory: the logic of science , 2003 .

[20]  A. Ohmura,et al.  The second law of thermodynamics and the global climate system: A review of the maximum entropy production principle , 2003 .

[21]  Roderick C. Dewar,et al.  Maximum entropy production and non-equilibrium statistical mechanics , 2005 .

[22]  Christopher Essex,et al.  Radiation and the Irreversible Thermodynamics of Climate , 1984 .

[23]  K. Popper,et al.  Conjectures and refutations;: The growth of scientific knowledge , 1972 .

[24]  K. Popper,et al.  Conjectures and refutations;: The growth of scientific knowledge , 1972 .

[25]  R. Dewar Maximum entropy production and the fluctuation theorem , 2005 .