Investigation of the origin of deep levels in CdTe doped with Bi

Combining optical (low temperature photoluminescence), electrical (thermoelectric effect spectroscopy), and structural (synchrotron X-ray powder diffraction) methods, the defect structure of CdTe doped with Bi was studied in crystals with dopant concentration in the range of 1017–1019at.∕cm3. The semi-insulating state observed in crystals with low Bi concentration is assigned to the formation of a shallow donor level and a deep donor recombination center. Studying the evolution of lattice parameter with temperature, we postulate that the deep center is formed by a Te–Te dimer and their formation is explained by a tetrahedral to octahedral distortion, due to the introduction of Bi in the CdTe lattice. We also shows that this model agrees with the electrical, optical, and transport charge properties of the samples.

[1]  J. Franc,et al.  Simulation of Photoelectric Transport in High-Resistivity CdTe for X-Ray Detectors , 2007, IEEE Transactions on Nuclear Science.

[2]  E. Gombia,et al.  Photoluminescence and photoconductivity in CdTe crystals doped with Bi , 2006 .

[3]  P. Jain,et al.  Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. , 2006, The journal of physical chemistry. B.

[4]  A. Cavallini,et al.  Recovery of radiation damage in CdTe detectors , 2005, IEEE Transactions on Nuclear Science.

[5]  C. H. Park,et al.  Doping by large-size-mismatched impurities: the microscopic origin of arsenic- or antimony-doped p-type zinc oxide. , 2004, Physical review letters.

[6]  Csaba Szeles,et al.  CdZnTe and CdTe materials for X‐ray and gamma ray radiation detector applications , 2004 .

[7]  O. Madelung Semiconductors: Data Handbook , 2003 .

[8]  B. Fraboni,et al.  Damage induced by ionizing radiation on CdZnTe and CdTe detectors , 2003, IEEE Transactions on Nuclear Science.

[9]  K. Benz,et al.  Defect structure of high resistive CdTe: in prepared by vertical gradient freeze method , 2003, 2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515).

[10]  E. Saucedo,et al.  Heavy metal doping of CdTe crystals , 2003, 2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515).

[11]  M. Isshiki,et al.  Cd-vacancy-related excitonic emission in CdTe , 2003 .

[12]  Michael Fiederle,et al.  Growth of high resistivity CdTe and (Cd,Zn)Te crystals , 2003, SPIE Optics + Photonics.

[13]  C. Ferrari,et al.  Defect-induced luminescence in high-resistivity high-purity undoped CdTe crystals , 2002 .

[14]  R. James,et al.  Defect structure of Ge-doped CdTe , 2002 .

[15]  A. Mills,et al.  Quantum antidot formation and correlation to optical shift of gold nanoparticles embedded in MgO. , 2002, Physical review letters.

[16]  Satoru Seto,et al.  Photoluminescence study on compensating defects in CdTe:Al , 2002 .

[17]  Kelvin G. Lynn,et al.  Electrical compensation in CdTe and Cd 0.9 Zn 0.1 Te by intrinsic defects , 2000 .

[18]  Klaus-Werner Benz,et al.  Modified compensation model of CdTe , 1998 .

[19]  Beatrice Fraboni,et al.  Deep energy levels in CdTe and CdZnTe , 1998 .

[20]  C. Scheiber,et al.  NEW DEVELOPMENTS IN CLINICAL APPLICATIONS OF CDTE AND CDZNTE DETECTORS , 1996 .

[21]  Meyer,et al.  Optical investigations of defects in Cd1-xZnxTe. , 1995, Physical review. B, Condensed matter.

[22]  Richard H. Bube,et al.  Photoelectronic Properties of Semiconductors , 1992 .

[23]  Saminadayar,et al.  Shallow donors in CdTe. , 1990, Physical review. B, Condensed matter.

[24]  R. H. Williams,et al.  Photoluminescence as a probe of semiconductor surfaces: CdTe and CdS , 1990 .

[25]  D. Chadi,et al.  Self‐compensation through a large lattice relaxation in p‐type ZnSe , 1989 .

[26]  R. H. Williams,et al.  Correlation of photoluminescence measurements with the composition and electronic properties of chemically etched CdTe surfaces , 1988 .

[27]  Chang,et al.  Theory of the atomic and electronic structure of DX centers in GaAs and AlxGa1-xAs alloys. , 1988, Physical review letters.

[28]  E. Molva,et al.  Acceptor states in CdTe and comparison with ZnTe. General trends , 1984 .

[29]  E. Molva,et al.  Photoluminescence studies in N, P, As implanted cadmium telluride , 1983 .

[30]  E. Molva,et al.  Magneto-optical studies of excitons bound to Ag and Cu acceptors inp-type CdTe , 1983 .

[31]  E. Molva,et al.  Identification of Cu and Ag acceptors in CdTe , 1982 .

[32]  J. Pautrat,et al.  Shallow Acceptors in Cadmium Telluride , 1982 .

[33]  R. Bell Binding energy of an electron to a three-defect-complex in CdTe , 1975 .

[34]  K. H. Nicholas,et al.  The evaluation of electron trapping parameters from conductivity glow curves in cadmium sulphide , 1964 .

[35]  H. Tatsuoka,et al.  Luminescent Properties of Sb Doped CdTe Grown by Hot‐Wall Epitaxy , 2002 .

[36]  J. Schreiber,et al.  Recognition and Distribution of A(g) and B(g) Dislocations in Indentation Deformation Zones on {111} and {110} Surfaces of CdTe , 1999 .