An Exponential Lower Bound on the Complexity of Regularization Paths

For a variety of regularized optimization problems in machine learning, algorithms computing the entire solution path have been developed recently. Most of these methods are quadratic programs that are parameterized by a single parameter, as for example the Support Vector Machine (SVM). Solution path algorithms do not only compute the solution for one particular value of the regularization parameter but the entire path of solutions, making the selection of an optimal parameter much easier. It has been assumed that these piecewise linear solution paths have only linear complexity, i.e. linearly many bends. We prove that for the support vector machine this complexity can be exponential in the number of training points in the worst case. More strongly, we construct a single instance of n input points in d dimensions for an SVM such that at least \Theta(2^{n/2}) = \Theta(2^d) many distinct subsets of support vectors occur as the regularization parameter changes.

[1]  T. L. Saaty,et al.  The computational algorithm for the parametric objective function , 1955 .

[2]  A. Stuart,et al.  Portfolio Selection: Efficient Diversification of Investments. , 1960 .

[3]  Klaus Ritter Ein Verfahren zur Lösung parameterabhängiger, nichtlinearer Maximum-Probleme , 1962, Unternehmensforschung.

[4]  K. Ritter On Parametric Linear and Quadratic Programming Problems. , 1981 .

[5]  B. Bank,et al.  Non-Linear Parametric Optimization , 1983 .

[6]  K. Borgwardt The Simplex Method: A Probabilistic Analysis , 1986 .

[7]  A. Peressini,et al.  The Mathematics Of Nonlinear Programming , 1988 .

[8]  Katta G. Murty,et al.  Linear complementarity, linear and nonlinear programming , 1988 .

[9]  Manfred Morari,et al.  Model predictive control: Theory and practice - A survey , 1989, Autom..

[10]  M. R. Osborne An effective method for computing regression quantiles , 1992 .

[11]  G. Ziegler Lectures on Polytopes , 1994 .

[12]  Donald Goldfarb,et al.  On the Complexity of the Simplex Method , 1994 .

[13]  M. Ziegler Volume 152 of Graduate Texts in Mathematics , 1995 .

[14]  N. Amenta,et al.  Deformed products and maximal shadows of polytopes , 1996 .

[15]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[16]  J. C. BurgesChristopher A Tutorial on Support Vector Machines for Pattern Recognition , 1998 .

[17]  Stephen P. Boyd,et al.  A path-following method for solving BMI problems in control , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[18]  David J. Crisp,et al.  A Geometric Interpretation of ?-SVM Classifiers , 1999, NIPS 2000.

[19]  Kristin P. Bennett,et al.  Duality and Geometry in SVM Classifiers , 2000, ICML.

[20]  M. R. Osborne,et al.  A new approach to variable selection in least squares problems , 2000 .

[21]  David Eppstein,et al.  Optimization over Zonotopes and Training Support Vector Machines , 2001, WADS.

[22]  Chih-Jen Lin,et al.  Training ν-Support Vector Classifiers: Theory and Algorithms , 2001 .

[23]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[24]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[25]  Bernhard Schölkopf,et al.  Kernel Methods for Implicit Surface Modeling , 2004, NIPS.

[26]  Robert Tibshirani,et al.  The Entire Regularization Path for the Support Vector Machine , 2004, J. Mach. Learn. Res..

[27]  Ji Zhu,et al.  Computing the Solution Path for the Regularized Support Vector Regression , 2005, NIPS.

[28]  Chih-Jen Lin,et al.  A tutorial on?-support vector machines , 2005 .

[29]  Ivor W. Tsang,et al.  Core Vector Machines: Fast SVM Training on Very Large Data Sets , 2005, J. Mach. Learn. Res..

[30]  Ewgenij Gawrilow,et al.  Geometric Reasoning with polymake , 2005, math/0507273.

[31]  LinChih-Jen,et al.  A tutorial on -support vector machines , 2005 .

[32]  Dmitry M. Malioutov,et al.  Homotopy continuation for sparse signal representation , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[33]  Eric Horvitz,et al.  Considering Cost Asymmetry in Learning Classifiers , 2006, J. Mach. Learn. Res..

[34]  Yoonkyung Lee,et al.  CHARACTERIZING THE SOLUTION PATH OF MULTICATEGORY SUPPORT VECTOR MACHINES , 2006 .

[35]  Gang Wang,et al.  Two-dimensional solution path for support vector regression , 2006, ICML.

[36]  Gang Wang,et al.  Solution Path for Semi-Supervised Classification with Manifold Regularization , 2006, Sixth International Conference on Data Mining (ICDM'06).

[37]  S. Rosset,et al.  Piecewise linear regularized solution paths , 2007, 0708.2197.

[38]  Gang Wang,et al.  A kernel path algorithm for support vector machines , 2007, ICML '07.

[39]  Mário A. T. Figueiredo,et al.  Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.

[40]  Stephen P. Boyd,et al.  An Interior-Point Method for Large-Scale $\ell_1$-Regularized Least Squares , 2007, IEEE Journal of Selected Topics in Signal Processing.

[41]  Gang Wang,et al.  The Kernel Path in Kernelized LASSO , 2007, AISTATS.

[42]  Stéphane Canu,et al.  Regularization Paths for nu -SVM and nu -SVR , 2007, ISNN.

[43]  Gyemin Lee,et al.  The One Class Support Vector Machine Solution Path , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[44]  Pierre Alliez,et al.  Computational geometry algorithms library , 2008, SIGGRAPH '08.

[45]  Gang Wang,et al.  A New Solution Path Algorithm in Support Vector Regression , 2008, IEEE Transactions on Neural Networks.

[46]  Zhi-Li Wu,et al.  Trace Solution Paths for SVMs via Parametric Quadratic Programming , 2008 .

[47]  David W. Albrecht,et al.  Algorithms for the Computation of Reduced Convex Hulls , 2009, Australasian Conference on Artificial Intelligence.

[48]  Martin Jaggi,et al.  A Combinatorial Algorithm to Compute Regularization Paths , 2009, ArXiv.

[49]  Martin Jaggi,et al.  Approximating Parameterized Convex Optimization Problems , 2010, ESA.

[50]  Jianbo Yang,et al.  An Improved Algorithm for the Solution of the Regularization Path of Support Vector Machine , 2010, IEEE Transactions on Neural Networks.

[51]  Martin Jaggi,et al.  Sparse Convex Optimization Methods for Machine Learning , 2011 .

[52]  Sören Laue,et al.  Approximating Concavely Parameterized Optimization Problems , 2012, NIPS.

[53]  顾彬,et al.  Regularization Path for v-Support Vector Classification , 2012 .

[54]  Bin Gu,et al.  Regularization Path for $\nu$ -Support Vector Classification , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[55]  Julien Mairal,et al.  Complexity Analysis of the Lasso Regularization Path , 2012, ICML.