Energy conserving balance of explicit time steps to combine implicit and explicit algorithms in structural dynamics

Recent developments have proved the advantage of combining both time implicit and time explicit integration algorithms in structural dynamics. A major problem is to define the initial conditions for the implicit simulation on the basis of a solution obtained from an unbalanced explicit resolution. The unbalanced nature of the explicit algorithm leads to oscillations in the fields of interest. Therefore, the values obtained after an explicit computation cannot be used directly as initial conditions for an implicit simulation. In this paper, we develop such initial values that lead to a stable (no numerical creation of energy) and energy-conserving transition.

[1]  J. O. Hallquist,et al.  Use of a coupled explicit—implicit solver for calculating spring-back in automotive body panels , 1995 .

[2]  D. W. Jung,et al.  Step-wise Combinded Implicit/Explicit Finite Element Simulation of Autobody Stamping Processes , 1998 .

[3]  Oscar Gonzalez,et al.  Exact energy and momentum conserving algorithms for general models in nonlinear elasticity , 2000 .

[4]  Jean-Claude Gelin,et al.  Quasi-static implicit and transient explicit analyses of sheet-metal forming using a C0 three-node shell element , 1995 .

[5]  H. P. Lee,et al.  Comparison of implicit and explicit finite element methods for dynamic problems , 2000 .

[6]  J. C. Simo,et al.  The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics , 1992 .

[7]  J. C. Simo,et al.  On the stability of symplectic and energy-momentum algorithms for non-linear Hamiltonian systems with symmetry , 1996 .

[8]  O. Gonzalez Mechanical systems subject to holonomic constraints: differential—algebraic formulations and conservative integration , 1999 .

[9]  Laurent Stainier,et al.  Combined implicit/explicit algorithms for crashworthiness analysis , 2004 .

[10]  H. Huh,et al.  Crash-worthiness assessment of thin-walled structures with the high-strength steel sheet , 2002 .

[11]  Eugenio Oñate,et al.  Recent developments in finite element analysis , 1994 .

[12]  Tod A. Laursen,et al.  A new solution procedure for application of energy-conserving algorithms to general constitutive models in nonlinear elastodynamics , 2001 .

[13]  F. Armero,et al.  On the formulation of high-frequency dissipative time-stepping algorithms for nonlinear dynamics. Part II: second-order methods , 2001 .

[14]  Tod A. Laursen,et al.  On energy consistency of large deformation plasticity models, with application to the design of unconditionally stable time integrators , 2002 .

[15]  T. Laursen,et al.  Energy consistent algorithms for dynamic finite deformation plasticity , 2002 .

[16]  C. SimoJ.,et al.  The discrete energy-momentum method , 1992 .

[17]  Michael R. Lovell,et al.  Predicting springback in sheet metal forming: an explicit to implicit sequential solution procedure , 1999 .

[18]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[19]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[20]  Laurent Stainier,et al.  SELF-ADAPTING TIME INTEGRATION MANAGEMENT IN CRASH-WORTHINESS AND SHEET METAL FORMING COMPUTATIONS , 2002 .

[21]  Dong-Yol Yang,et al.  Comparative investigation into implicit, explicit, and iterative implicit/explicit schemes for the simulation of sheet-metal forming processes , 1995 .

[22]  F. Armero,et al.  On the formulation of high-frequency dissipative time-stepping algorithms for nonlinear dynamics. Part I: low-order methods for two model problems and nonlinear elastodynamics , 2001 .

[23]  Jean-Philippe Ponthot,et al.  Unified stress update algorithms for the numerical simulation of large deformation elasto-plastic and elasto-viscoplastic processes , 2002 .

[24]  William J.T. Daniel,et al.  A partial velocity approach to subcycling structural dynamics , 2003 .

[25]  J. C. Simo,et al.  Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics , 1992 .

[26]  J. Z. Zhu,et al.  The finite element method , 1977 .

[27]  Laurent Stainier,et al.  On the use of large time steps with an energy momentum conserving algorithm for non-linear hypoelastic constitutive models , 2004 .

[28]  Ted Belytschko,et al.  Eigenvalues and Stable Time Steps for the Uniform Strain Hexahedron and Quadrilateral , 1984 .

[29]  Laurent Stainier,et al.  An energy–momentum conserving algorithm for non‐linear hypoelastic constitutive models , 2004 .

[30]  T. Belytschko,et al.  Computational Methods for Transient Analysis , 1985 .

[31]  Wilhelm Rust,et al.  Finite element limit load analysis of thin-walled structures by ANSYS (implicit), LS-DYNA (explicit) and in combination , 2003 .

[32]  Jintai Chung,et al.  Explicit time integration algorithms for structural dynamics with optimal numerical dissipation , 1996 .

[33]  L. Stainier,et al.  Combined implicit-explicit algorithms for non-linear structural dynamics , 2002 .

[34]  Laurent Stainier,et al.  Combined implicit/Explicit time-integration algorithms for the numerical simulation of sheet metal forming , 2004 .

[35]  Michel Hogge,et al.  Efficient Implicit Schemes for Transient Problems in Metal Forming Simulation , 1996 .

[36]  G. Maenchen,et al.  The Tensor Code , 1963 .

[37]  David J. Benson,et al.  Stable time step estimation for multi-material Eulerian hydrocodes , 1998 .