Structural collapse in phlogopite mica-rich mine tailings induced by mechanochemical treatment and implications to alkali activation potential

[1]  J. Burns,et al.  Transformation of Calcite to Aragonite by Grinding , 1956 .

[2]  G. Brindley,et al.  The crystal structures of pyrophyllite, 1Te, and of its dehydroxylate , 1972 .

[3]  E. Gavish,et al.  Quantitative analysis of calcite and Mg‐calcite by X‐ray diffraction: effect of grinding on peak height and peak area , 1973 .

[4]  S. Udagawa,et al.  THE CRYSTAL STRUCTURE OF MUSCOVITE DEHYDROXYLATE , 1974 .

[5]  J. H. Rayner,et al.  The crystal structure of phlogopite by neutron diffraction , 1974, Mineralogical Magazine.

[6]  J. M. Trillo,et al.  Effects of mechanical grinding on the texture and structure of calcium carbonate , 1975 .

[7]  S. Warne Carbonate mineral detection by variable atmosphere differential thermal analysis , 1977, Nature.

[8]  L. Heller-Kallai,et al.  Dehydroxylation of Dioctahedral Phyllosilicates , 1980 .

[9]  E. F. Aglietti,et al.  Mechanochemical effects in kaolinite grinding. I. Textural and physicochemical aspects , 1986 .

[10]  V. Nefedov,et al.  X-ray photoelectron spectroscopy of solid surfaces , 1988 .

[11]  V. Malhotra,et al.  Alkali activated ground granulated blast-furnace slag concrete: Preliminary investigation , 1991 .

[12]  D. Sutherland,et al.  Application of automated quantitative mineralogy in mineral processing , 1991 .

[13]  M. Senna,et al.  Thermal behavior of mechanically amorphized talc , 1992 .

[14]  É. Kristóf,et al.  The effect of intensive grinding on the crystal structure of dolomite , 1993 .

[15]  P. Sánchez-soto,et al.  Grinding effect on kaolinite-pyrophyllite-illite natural mixtures and its influence on mullite formation , 1994 .

[16]  É. Kristóf-Makó,et al.  The effect of mechanical treatment on the crystal structure and thermal decomposition of dolomite , 1999 .

[17]  Pierre-Claude Aitcin,et al.  Cements of yesterday and today Concrete of tomorrow , 2000 .

[18]  J. Deventer,et al.  The geopolymerisation of alumino-silicate minerals , 2000 .

[19]  M. Nygren,et al.  High-temperature study and thermal expansion of phlogopite , 2000 .

[20]  O. Tuovinen,et al.  Dissolution and structural alteration of phlogopite mediated by proton attack and bacterial oxidation of ferrous iron , 2001 .

[21]  J. W. P. and,et al.  Characterization of Fly-Ash-Based Geopolymeric Binders Activated with Sodium Aluminate , 2002 .

[22]  T. Cheng,et al.  Fire-resistant geopolymer produced by granulated blast furnace slag , 2003 .

[23]  P Plescia,et al.  Mechanochemical treatment to recycling asbestos-containing waste. , 2003, Waste management.

[24]  G. Martinelli,et al.  Mechanochemical dissociation of calcium carbonate: laboratory data and relation to natural emissions of CO2 , 2004 .

[25]  A. Yoshikawa,et al.  Growth and Characterization of AlInN Ternary Alloys in Whole Composition Range and Fabrication of InN/AlInN Multiple Quantum Wells by RF Molecular Beam Epitaxy , 2006 .

[26]  Sanjay Kumar,et al.  Influence of reactivity of fly ash on geopolymerisation , 2007 .

[27]  Rolf Fandrich,et al.  Modern SEM based mineral liberation analysis , 2007 .

[28]  J. Deventer,et al.  The Role of Inorganic Polymer Technology in the Development of ‘Green Concrete’ , 2007 .

[29]  K. MacKenzie,et al.  Formation of inorganic polymers (geopolymers) from 2:1 layer lattice aluminosilicates , 2008 .

[30]  J. Farinha,et al.  Geochemistry and Mineralogy of Mill Tailings Impoundments from the Panasqueira Mine (Portugal): Implications for the Surrounding Environment , 2008 .

[31]  F. Pacheco-Torgal,et al.  Tungsten mine waste geopolymeric binder: Preliminary hydration products investigations , 2009 .

[32]  A. V. Riessen,et al.  Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature , 2009 .

[33]  Lynn Price,et al.  The CO2 abatement cost curve for the Thailand cement industry , 2010 .

[34]  Pacheco-Torgal Fernando,et al.  Durability and Environmental Performance of Alkali-Activated Tungsten Mine Waste Mud Mortars , 2010 .

[35]  Elaine M. Wightman,et al.  The effect of breakage mechanism on the mineral liberation properties of sulphide ores , 2010 .

[36]  Q. Feng,et al.  The liberation effect of magnetite fine ground by vertical stirred mill and ball mill , 2012 .

[37]  E. Tzimas,et al.  Assessment of CO2 Capture Technologies in Cement Manufacturing Process , 2012 .

[38]  Su Cheol Choi,et al.  Effect of Fe2O3 on the Physical Property of Geopolymer Paste , 2012 .

[39]  A. Albuquerque,et al.  Effect of immersion in water partially alkali-activated materials obtained of tungsten mine waste mud , 2012 .

[40]  H. Benzer,et al.  Comparison of different breakage mechanisms in terms of product particle size distribution and mineral liberation , 2013 .

[41]  F. Collins,et al.  Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete , 2013 .

[42]  X. Jiao,et al.  Thermal stability of a silica-rich vanadium tailing based geopolymer , 2013 .

[43]  Wensheng Zhang,et al.  Effect of elevated temperature on the properties of geopolymer synthesized from calcined ore-dressing tailing of bauxite and ground-granulated blast furnace slag , 2014 .

[44]  W. Rickard,et al.  Fire-Resistant Geopolymers: Role of Fibres and Fillers to Enhance Thermal Properties , 2014 .

[45]  P. Sarker,et al.  Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete , 2014 .

[46]  J. Provis Geopolymers and other alkali activated materials: why, how, and what? , 2014 .

[47]  Nataša Marjanović,et al.  Improving reactivity of fly ash and properties of ensuing geopolymers through mechanical activation , 2014 .

[48]  M. Illikainen,et al.  Utilization of sulphidic tailings from gold mine as a raw material in geopolymerization , 2016 .

[49]  Xu Wu,et al.  Co-disposal of MSWI fly ash and Bayer red mud using an one-part geopolymeric system. , 2016, Journal of hazardous materials.

[50]  Mu Song,et al.  Experimental Study on Utilization of Quartz Mill Tailings as a Filler to Prepare Geopolymer , 2016 .

[51]  Yi-min Zhang,et al.  Preparation of geopolymers from vanadium tailings by mechanical activation , 2017 .

[52]  M. Illikainen,et al.  Thermally treated phlogopite as magnesium-rich precursor for alkali activation purpose , 2017 .

[53]  A. Gualtieri,et al.  Effect of Grinding on Chrysotile, Amosite and Crocidolite and Implications for Thermal Treatment , 2018 .

[54]  M. Benzaazoua,et al.  Recycling of phosphate mine tailings for the production of geopolymers , 2018, Journal of Cleaner Production.

[55]  E. Levänen,et al.  Recycling mine tailings in chemically bonded ceramics : a review , 2018 .

[56]  A. Gualtieri,et al.  The Effect of Grinding on Tremolite Asbestos and Anthophyllite Asbestos , 2018, Minerals.

[57]  John L. Provis,et al.  Alkali-activated materials , 2018, Cement and Concrete Research.

[58]  A. Kalinkin,et al.  Alkali-Activated Binder Based on Milled Antigorite , 2018, Minerals.