Obesity, autophagy and the pathogenesis of liver and pancreatic cancers

Liver and pancreatic cancers are both highly lethal diseases with limited to no therapeutic options for patients. Recent studies suggest that deregulated autophagy plays a role in the pathogenesis of these diseases by perturbing cellular homeostasis and laying the foundation for disease development. While accumulation of p62 upon impaired autophagy has been implicated in hepatocellular carcinoma, its role in pancreatic ductal adenocarcinoma remains less clear. This review will focus on recent studies illustrating the role of autophagy in liver and pancreatic cancers. The relationships between autophagy, nuclear factor‐κB signaling and obesity in hepatocellular carcinoma will be discussed, as well as the dual role of autophagy in pancreatic ductal adenocarcinoma.

[1]  A. Kimmelman,et al.  The dynamic nature of autophagy in cancer. , 2011, Genes & development.

[2]  Scott E. Kern,et al.  Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis , 2011, Nature.

[3]  M. Barbacid,et al.  Pancreatitis-induced inflammation contributes to pancreatic cancer by inhibiting oncogene-induced senescence. , 2011, Cancer cell.

[4]  Keiji Tanaka,et al.  Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells , 2011, The Journal of cell biology.

[5]  Y. Eishi,et al.  Autophagy-deficient mice develop multiple liver tumors. , 2011, Genes & development.

[6]  G. Bhanot,et al.  Autophagy Suppresses Tumorigenesis through Elimination of p62 , 2011, Cell.

[7]  Seamus J. Martin,et al.  Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival. , 2011, Molecular cell.

[8]  G. Kroemer,et al.  Autophagy in Ras-induced malignant transformation: fatal or vital? , 2011, Molecular cell.

[9]  Marc Liesa,et al.  Pancreatic cancers require autophagy for tumor growth. , 2011, Genes & development.

[10]  H. Coller,et al.  Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. , 2011, Genes & development.

[11]  C. Kenific,et al.  Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation , 2011, Molecular biology of the cell.

[12]  Donna D. Zhang,et al.  Regulation of the Nrf2-Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases. , 2010, Antioxidants & redox signaling.

[13]  M. Hebrok,et al.  KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma , 2010, Nature Reviews Cancer.

[14]  Ping Li,et al.  Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. , 2010, Cell metabolism.

[15]  M. Komatsu,et al.  Physiological significance of selective degradation of p62 by autophagy , 2010, FEBS letters.

[16]  M. Karin,et al.  Hepatocyte IKKbeta/NF-kappaB inhibits tumor promotion and progression by preventing oxidative stress-driven STAT3 activation. , 2010, Cancer cell.

[17]  Mihee M. Kim,et al.  The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1 , 2010, Nature Cell Biology.

[18]  L. Zitvogel,et al.  The IKK complex contributes to the induction of autophagy , 2010, The EMBO journal.

[19]  Jun Hee Lee,et al.  Dietary and Genetic Obesity Promote Liver Inflammation and Tumorigenesis by Enhancing IL-6 and TNF Expression , 2010, Cell.

[20]  Paul Timpson,et al.  Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer , 2010, Proceedings of the National Academy of Sciences.

[21]  S. Akira,et al.  Disruption of TAK1 in hepatocytes causes hepatic injury, inflammation, fibrosis, and carcinogenesis , 2009, Proceedings of the National Academy of Sciences.

[22]  D. Klionsky,et al.  Regulation mechanisms and signaling pathways of autophagy. , 2009, Annual review of genetics.

[23]  R. Hruban,et al.  Widespread Activation of the DNA Damage Response in Human Pancreatic Intraepithelial Neoplasia , 2009, Modern Pathology.

[24]  M. Czaja,et al.  Autophagy regulates lipid metabolism , 2009, Nature.

[25]  S. Lowe,et al.  Eating to exit: autophagy-enabled senescence revealed. , 2009, Genes & development.

[26]  Simon Tavaré,et al.  Autophagy mediates the mitotic senescence transition. , 2009, Genes & development.

[27]  S. Qiu,et al.  Association of autophagy defect with a malignant phenotype and poor prognosis of hepatocellular carcinoma. , 2008, Cancer research.

[28]  D. Klionsky,et al.  How to live long and prosper: autophagy, mitochondria, and aging. , 2008, Physiology.

[29]  J. Flores,et al.  The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis. , 2008, Cancer cell.

[30]  Guido Kroemer,et al.  Autophagy in the Pathogenesis of Disease , 2008, Cell.

[31]  Masaaki Komatsu,et al.  Homeostatic Levels of p62 Control Cytoplasmic Inclusion Body Formation in Autophagy-Deficient Mice , 2007, Cell.

[32]  W. Burhans,et al.  DNA replication stress, genome instability and aging , 2007, Nucleic acids research.

[33]  H. El‐Serag,et al.  Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. , 2007, Gastroenterology.

[34]  F. Anania,et al.  Abnormal lipid and glucose metabolism in obesity: implications for nonalcoholic fatty liver disease. , 2007, Gastroenterology.

[35]  M. Barbacid,et al.  Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. , 2007, Cancer cell.

[36]  T. Luedde,et al.  Deletion of NEMO/IKKγ in Liver Parenchymal Cells Causes Steatohepatitis and Hepatocellular Carcinoma , 2007 .

[37]  S. Thorgeirsson,et al.  Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. , 2006, Gastroenterology.

[38]  Michael Karin,et al.  IKKβ Couples Hepatocyte Death to Cytokine-Driven Compensatory Proliferation that Promotes Chemical Hepatocarcinogenesis , 2005, Cell.

[39]  Masaaki Komatsu,et al.  Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice , 2005, The Journal of cell biology.

[40]  Michael Karin,et al.  Reactive Oxygen Species Promote TNFα-Induced Death and Sustained JNK Activation by Inhibiting MAP Kinase Phosphatases , 2005, Cell.

[41]  S. Thorgeirsson,et al.  Application of comparative functional genomics to identify best-fit mouse models to study human cancer , 2004, Nature Genetics.

[42]  S. Caldwell,et al.  Obesity and hepatocellular carcinoma. , 2004, Gastroenterology.

[43]  Govind Bhagat,et al.  Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. , 2003, The Journal of clinical investigation.

[44]  K. Zatloukal,et al.  Mallory body—A disease‐associated type of sequestosome , 2002, Hepatology.

[45]  F. Bray,et al.  Cancer burden in the year 2000. The global picture. , 2001, European journal of cancer.

[46]  M. Karin,et al.  NF-κB and STAT3 – key players in liver inflammation and cancer , 2011, Cell Research.

[47]  N. Katunuma,et al.  Impaired autophagic flux mediates acinar cell vacuole formation and trypsinogen activation in rodent models of acute pancreatitis. , 2009, The Journal of clinical investigation.

[48]  T. Luedde,et al.  Deletion of NEMO/IKKgamma in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. , 2007, Cancer cell.

[49]  Ronald A. DePinho,et al.  Hepatocellular carcinoma pathogenesis: from genes to environment , 2006, Nature Reviews Cancer.

[50]  Kurt Zatloukal,et al.  p62 Is a common component of cytoplasmic inclusions in protein aggregation diseases. , 2002, The American journal of pathology.