A Geometric Ultraviolet‐B Radiation Transfer Model Applied to Vegetation Canopies

The decrease in stratospheric ozone (O3) has prompted continued efforts to assess the potential damage to plant and animal life due to enhanced levels of solar ultraviolet (UV)-B (280-320 nm) radiation. The objective of this study was to develop and evaluate an analytical model to simulate the UV-B irradiance loading on horizontal below- canopy surfaces, as influenced by vegetation.

[1]  Richard H. Grant,et al.  Ultraviolet sky radiance distributions of translucent overcast skies , 1997 .

[2]  R. H. Grant Ultraviolet-B and photosynthetically active radiation environment of inclined leaf surfaces in a maize canopy and implications for modeling , 1999 .

[3]  A. E. Green,et al.  ANALYTICAL CHARACTERIZATION OF SPECTRAL ACTINIC FLUX and SPECTRAL IRRADIANCE IN THE MIDDLE ULTRAVIOLET , 1982, Photochemistry and photobiology.

[4]  H. Smith,et al.  The Function of Phytochrome in Nature , 1983 .

[5]  Richard H. Grant,et al.  Solar ultraviolet-B and photosynthetically active irradiance in the urban sub-canopy: A survey of influences , 1996 .

[6]  A. Teramura,et al.  Potential impacts of increased solar UV-B on global plant productivity. Book chapter , 1990 .

[7]  Richard H. Grant,et al.  Obscured Overcast Sky Radiance Distributions for Ultraviolet and Photosynthetically Active Radiation , 1997 .

[8]  A. Teramura,et al.  Intraspecific differences in growth and yield of soybean exposed to ultraviolet-B radiation under greenhouse and field conditions , 1986 .

[9]  L. Björn,et al.  Effects of increased solar ultraviolet radiation on terrestrial ecosystems , 1998 .

[10]  Janet F. Bornman,et al.  New trends in photobiology: Target sites of UV-B radiation in photosynthesis of higher plants , 1989 .

[11]  A. Teramura,et al.  Response of 19 cultivars of soybeans to ultraviolet-B irradiance , 1981 .

[12]  R. Myneni,et al.  A review on the theory of photon transport in leaf canopies , 1989 .

[13]  D. Matt,et al.  Effects of sky brightness distribution upon penetration of diffuse radiation through canopy gaps in a deciduous forest , 1980 .

[14]  M. Monsi Uber den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung fur die Stoffproduktion , 1953 .

[15]  N. Goel Models of vegetation canopy reflectance and their use in estimation of biophysical parameters from reflectance data , 1988 .

[16]  C. T. Wit Photosynthesis of leaf canopies , 1965 .

[17]  D. Charles-Edwards,et al.  Interception of Diffuse and Direct-beam Radiation by a Hedgerow Apple Orchard , 1976 .

[18]  Richard H. Grant,et al.  Clear sky radiance distributions in ultraviolet wavelength bands , 1997 .

[19]  M. Caldwell,et al.  Chapter 4 – SOLAR UV IRRADIATION AND THE GROWTH AND DEVELOPMENT OF HIGHER PLANTS , 1971 .

[20]  Geoffrey G. Parker,et al.  A Survey of Ultraviolet-B Radiation in Forests , 1994 .

[21]  A. Teramura,et al.  UV‐B EFFECTS ON TERRESTRIAL PLANTS , 1989 .

[22]  I. R. Cowan The Interception and Absorption of Radiation in Plant Stands , 1968 .

[23]  C. Daughtry Direct measurements of canopy structure , 1990 .

[24]  J. Norman,et al.  Radiative Transfer in an Array of Canopies1 , 1983 .

[25]  J. M. Norman,et al.  Indirect sensing of plant canopy structure with simple radiation measurements , 1988 .

[26]  R. McKenzie,et al.  Changes in biologically active ultraviolet radiation reaching the Earth's surface. , 1998, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.