La théorie des jeux non-coopératifs appliquée aux réseaux de télécommunication

RésuméDans cet article, nous exposons divers outils provenant de la théorie des jeux non-coopératifs qui permettent d’étudier des situations de compétition dans les réseaux de télécommunication. Nous décrivons les outils mathématiques tout en offrant des exemples de domaines de réseaux de télécommunication variés.AbstractIn this paper, we present various tools originating from non-cooperative Game Theory, which allow us to study competition situations in telecommunication networks. We describe the mathematical tools while providing examples from a variety of areas in telecommunication networks.

[1]  J. Goodman Note on Existence and Uniqueness of Equilibrium Points for Concave N-Person Games , 1965 .

[2]  Georges Zaccour,et al.  Differential Games in Marketing , 2003 .

[3]  Eitan Altman,et al.  Non-cooperative routing in loss networks , 2002, Perform. Evaluation.

[4]  Ilhan Kubilay Geçkil,et al.  Game Theory and the Law , 2009 .

[5]  J. D. Morrow Game Theory for Political Scientists , 1994 .

[6]  Hisao Kameda,et al.  Mixed equilibrium (ME) for multiclass routing games , 2002, IEEE Trans. Autom. Control..

[7]  H. Stackelberg,et al.  Marktform und Gleichgewicht , 1935 .

[8]  E. Altman,et al.  Mixed Equilibrium for Multiclass Routing Games , 2001 .

[9]  E. J. Collins,et al.  The hawk-dove game as an average cost problem , 1991 .

[10]  William R. Zame,et al.  The Algebraic Geometry of Games and the Tracing Procedure , 1991 .

[11]  Eitan Altman,et al.  On the Convergence to Nash Equilibrium in Problems of Distributed Computing , 2002, Ann. Oper. Res..

[12]  Eitan Altman,et al.  Telecommunications network equilibrium with price and quality-of-service characteristics , 2003 .

[13]  A. Cabrales Stochastic replicator dynamics , 2000 .

[14]  Hisao Kameda,et al.  Paradoxes in distributed decisions on optimal load balancing for networks of homogeneous computers , 2002, JACM.

[15]  E. Altman,et al.  An evolutionary game perspective to ALOHA with power control , 2005 .

[16]  Eitan Altman,et al.  Constrained traffic equilibrium in routing , 2003, IEEE Trans. Autom. Control..

[17]  Steven H. Low,et al.  A duality model of TCP and queue management algorithms , 2003, TNET.

[18]  Alain Haurie,et al.  On the relationship between Nash - Cournot and Wardrop equilibria , 1983, Networks.

[19]  Ariel Orda,et al.  Competitive routing in multiuser communication networks , 1993, TNET.

[20]  E. Rowland Theory of Games and Economic Behavior , 1946, Nature.

[21]  Gerard Debreu,et al.  A Social Equilibrium Existence Theorem* , 1952, Proceedings of the National Academy of Sciences.

[22]  R. Aumann Subjectivity and Correlation in Randomized Strategies , 1974 .

[23]  Hisao Kameda,et al.  How harmful the paradox can be in the Braess/Cohen-Kelly-Jeffries networks , 2002, Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.

[24]  Eitan Altman,et al.  Competitive routing in networks with polynomial cost , 2000, Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064).

[25]  E. Altman,et al.  Equilibrium, Games, and Pricing in Transportation and Telecommunication Networks , 2004 .

[26]  W. Hamilton,et al.  The evolution of cooperation. , 1984, Science.

[27]  Ariel Orda,et al.  Incentive compatible pricing strategies for QoS routing , 1999, IEEE INFOCOM '99. Conference on Computer Communications. Proceedings. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies. The Future is Now (Cat. No.99CH36320).

[28]  Stephen Morris,et al.  Finance Applications of Game Theory , 1998 .

[29]  William H. Sandholm,et al.  Evolutionary Implementation and Congestion Pricing , 2002 .

[30]  Eitan Altman,et al.  Competitive routing in networks with polynomial costs , 2002, IEEE Trans. Autom. Control..

[31]  T. Basar,et al.  H∞-0ptimal Control and Related Minimax Design Problems: A Dynamic Game Approach , 1996, IEEE Trans. Autom. Control..

[32]  Eitan Altman,et al.  TCP network calculus: the case of large delay-bandwidth product , 2002, Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.

[33]  A. Houston,et al.  Evolutionarily stable strategies in the repeated hawk–dove game , 1991 .

[34]  J M Smith,et al.  Evolution and the theory of games , 1976 .

[35]  B. Wie A differential game approach to the dynamic mixed behavior traffic network equilibrium problem , 1995 .

[36]  Donald F. Towsley,et al.  Fixed point approximations for TCP behavior in an AQM network , 2001, SIGMETRICS '01.

[37]  Joel E. Cohen,et al.  A paradox of congestion in a queuing network , 1990, Journal of Applied Probability.

[38]  Lawrence E. Blume,et al.  The Algebraic Geometry of Competitive Equilibrium , 1992 .

[39]  Eitan Altman,et al.  Braess-like paradoxes in distributed computer systems , 2000, IEEE Trans. Autom. Control..

[40]  Eitan Altman,et al.  Routing into Two Parallel Links: Game-Theoretic Distributed Algorithms , 2001, J. Parallel Distributed Comput..

[41]  Ariel Orda,et al.  Avoiding the Braess paradox in non-cooperative networks , 1999, Journal of Applied Probability.

[42]  Paolo Cubiotti Existence of nash equilibria for generalized games without upper semicontinuity , 1997, Int. J. Game Theory.

[43]  A Charnes,et al.  Constrained Games and Linear Programming. , 1953, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Eitan Altman,et al.  Competitive routing in multicast communications , 2005 .

[45]  William H. Sandholm,et al.  Potential Games with Continuous Player Sets , 2001, J. Econ. Theory.

[46]  G. Debreu Existence of competitive equilibrium , 1982 .

[47]  Ariel Orda,et al.  Competitive routing in multi-user communication networks , 1993, IEEE INFOCOM '93 The Conference on Computer Communications, Proceedings.

[48]  A. Nagurney,et al.  ON SOME TRAFFIC EQUILIBRIUM THEORY PARADOXES , 1984 .

[49]  F. Kelly,et al.  Braess's paradox in a loss network , 1997, Journal of Applied Probability.

[50]  Piyush Gupta,et al.  A system and traffic dependent adaptive routing algorithm for ad hoc networks , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[51]  Catherine Rosenberg,et al.  Energy and Cost Optimizations in Wireless Sensor Networks: A Survey , 2005 .