Mechanistic QSAR analysis to predict the binding affinity of diverse heterocycles as selective cannabinoid 2 receptor inhibitor

[1]  Abdelkbir Errougui,et al.  Exploration of Cannabis constituents as potential candidates against diabetes mellitus disease using molecular docking, dynamics simulations and ADMET investigations , 2023, Scientific African.

[2]  Abdelkbir Errougui,et al.  Structure‐Based Virtual Screening, ADMET analysis, and Molecular Dynamics Simulation of Moroccan Natural Compounds as Candidates α‐Amylase Inhibitors , 2023, ChemistrySelect.

[3]  Suraj N. Mali,et al.  Repositioning Cannabinoids and Terpenes as Novel EGFR-TKIs Candidates for Targeted Therapy Against Cancer: A virtual screening model using CADD and biophysical simulations , 2023, Heliyon.

[4]  G. Michielin,et al.  Direct encapsulation of biomolecules in semi-permeable microcapsules produced with double-emulsions , 2022, bioRxiv.

[5]  Arabinda Ghosh,et al.  Target Specific Inhibition of Protein Tyrosine Kinase in Conjunction With Cancer and SARS-COV-2 by Olive Nutraceuticals , 2022, Frontiers in Pharmacology.

[6]  M. Zaki,et al.  QSAR and Pharmacophore Modeling of Nitrogen Heterocycles as Potent Human N-Myristoyltransferase (Hs-NMT) Inhibitors , 2021, Molecules.

[7]  So-Jung Park,et al.  QSAR Model for Predicting the Cannabinoid Receptor 1 Binding Affinity and Dependence Potential of Synthetic Cannabinoids , 2020, Molecules.

[8]  Rafael A. Caceres,et al.  Geo-Measures: A PyMOL plugin for protein structure ensembles analysis , 2020, Comput. Biol. Chem..

[9]  Junmei Wang,et al.  Prediction of the binding affinities and selectivity for CB1 and CB2 ligands using homology modeling, molecular docking, molecular dynamics simulations, and MM-PBSA binding free energy calculations. , 2020, ACS chemical neuroscience.

[10]  W. Guba,et al.  Selective Cannabinoid 2 Receptor Agonists as Potential Therapeutic Drugs for the Treatment of Endotoxin-Induced Uveitis , 2019, Molecules.

[11]  M. R. Iyer,et al.  Crystal Structure of the Human Cannabinoid Receptor CB2 , 2019, Cell.

[12]  V. Masand,et al.  Multiple quantitative structure-activity relationships (QSARs) analysis for orally active trypanocidal N-myristoyltransferase inhibitors , 2019, Journal of Molecular Structure.

[13]  E. Benfenati,et al.  QSAR Development for Plasma Protein Binding: Influence of the Ionization State , 2018, Pharmaceutical Research.

[14]  X. Xie,et al.  Targeted inhibition of the type 2 cannabinoid receptor is a novel approach to reduce renal fibrosis. , 2018, Kidney international.

[15]  V. Abbate,et al.  Discovery of High-Affinity Cannabinoid Receptors Ligands through a 3D-QSAR Ushered by Scaffold-Hopping Analysis † , 2018, Molecules.

[16]  Roberto Todeschini,et al.  On the Misleading Use of QF32 for QSAR Model Comparison , 2018, Molecular informatics.

[17]  F. He,et al.  Monoacylglycerol lipase regulates cannabinoid receptor 2-dependent macrophage activation and cancer progression , 2018, Nature Communications.

[18]  Vesna Rastija,et al.  PyDescriptor : A new PyMOL plugin for calculating thousands of easily understandable molecular descriptors , 2017 .

[19]  P. Murumkar,et al.  Contemporary developments in the discovery of selective factor Xa inhibitors: A review. , 2016, European journal of medicinal chemistry.

[20]  J. Gertsch,et al.  Synthesis and pharmacological evaluation of new biphenylic derivatives as CB2 receptor ligands. , 2016, European journal of medicinal chemistry.

[21]  Vincent Zoete,et al.  A BOILED‐Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules , 2016, ChemMedChem.

[22]  David A. Winkler,et al.  Understanding the Roles of the "Two QSARs" , 2016, J. Chem. Inf. Model..

[23]  S. N. Bukhari,et al.  Optimization of antiproliferative activity of substituted phenyl 4-(2-oxoimidazolidin-1-yl) benzenesulfonates: QSAR and CoMFA analyses. , 2015, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[24]  Louis-Philippe Morency,et al.  NRGsuite: a PyMOL plugin to perform docking simulations in real time using FlexAID , 2015, Bioinform..

[25]  Yuzong Chen,et al.  Molecular design, synthesis and biological research of novel pyridyl acridones as potent DNA-binding and apoptosis-inducing agents. , 2015, European journal of medicinal chemistry.

[26]  G. Pinna,et al.  Tricyclic pyrazoles. Part 6. Benzofuro[3,2-c]pyrazole: a versatile architecture for CB2 selective ligands. , 2014, European journal of medicinal chemistry.

[27]  J. Dearden,et al.  QSAR modeling: where have you been? Where are you going to? , 2014, Journal of medicinal chemistry.

[28]  Paola Gramatica,et al.  QSARINS: A new software for the development, analysis, and validation of QSAR MLR models , 2013, J. Comput. Chem..

[29]  Steffen Fischer,et al.  A 3D-QSAR model for cannabinoid receptor (CB2) ligands derived from aligned pharmacophors , 2013, Journal of Cheminformatics.

[30]  Paola Gramatica,et al.  QSAR Modeling is not “Push a Button and Find a Correlation”: A Case Study of Toxicity of (Benzo‐)triazoles on Algae , 2012, Molecular informatics.

[31]  Jogoth Ali,et al.  In Silico Prediction of Aqueous Solubility Using Simple QSPR Models: The Importance of Phenol and Phenol-like Moieties , 2012, J. Chem. Inf. Model..

[32]  A. Tropsha,et al.  Does Rational Selection of Training and Test Sets Improve the Outcome of QSAR Modeling? , 2012, J. Chem. Inf. Model..

[33]  G. V. Paolini,et al.  Quantifying the chemical beauty of drugs. , 2012, Nature chemistry.

[34]  Chris Morley,et al.  Open Babel: An open chemical toolbox , 2011, J. Cheminformatics.

[35]  J. Gelovani,et al.  Fluorinated cannabinoid CB2 receptor ligands: synthesis and in vitro binding characteristics of 2-oxoquinoline derivatives. , 2011, Bioorganic & medicinal chemistry.

[36]  Paola Gramatica,et al.  Real External Predictivity of QSAR Models: How To Evaluate It? Comparison of Different Validation Criteria and Proposal of Using the Concordance Correlation Coefficient , 2011, J. Chem. Inf. Model..

[37]  P. Tosco,et al.  Open3DALIGN: an open-source software aimed at unsupervised ligand alignment , 2011, J. Comput. Aided Mol. Des..

[38]  W. Sherman,et al.  Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field. , 2010, Journal of chemical theory and computation.

[39]  M. Waring Lipophilicity in drug discovery , 2010, Expert opinion on drug discovery.

[40]  Roberto Todeschini,et al.  Comments on the Definition of the Q2 Parameter for QSAR Validation , 2009, J. Chem. Inf. Model..

[41]  J. Dearden,et al.  How not to develop a quantitative structure–activity or structure–property relationship (QSAR/QSPR) , 2009, SAR and QSAR in environmental research.

[42]  Thierry Langer,et al.  Discovery of novel CB2 receptor ligands by a pharmacophore-based virtual screening workflow. , 2009, Journal of medicinal chemistry.

[43]  Bin Ye,et al.  Thiophene-anthranilamides as highly potent and orally available factor Xa inhibitors. , 2007, Journal of medicinal chemistry.

[44]  Serdar Durdagi,et al.  The application of 3D-QSAR studies for novel cannabinoid ligands substituted at the C1' position of the alkyl side chain on the structural requirements for binding to cannabinoid receptors CB1 and CB2. , 2007, Journal of medicinal chemistry.

[45]  Xin Wen,et al.  BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities , 2006, Nucleic Acids Res..

[46]  Hans Matter,et al.  Structural requirements for factor Xa inhibition by 3-oxybenzamides with neutral P1 substituents: combining X-ray crystallography, 3D-QSAR, and tailored scoring functions. , 2005, Journal of medicinal chemistry.

[47]  Y. Martin,et al.  A bioavailability score. , 2005, Journal of medicinal chemistry.

[48]  John S. Delaney,et al.  ESOL: Estimating Aqueous Solubility Directly from Molecular Structure , 2004, J. Chem. Inf. Model..

[49]  P. Mcgeer,et al.  Reduction of human monocytic cell neurotoxicity and cytokine secretion by ligands of the cannabinoid‐type CB2 receptor , 2003, British journal of pharmacology.

[50]  H. Coley,et al.  Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting p-glycoprotein. , 2003, Cancer control : journal of the Moffitt Cancer Center.

[51]  G. Cruciani,et al.  A 3D-QSAR study on the structural requirements for binding to CB(1) and CB(2) cannabinoid receptors. , 2000, Journal of Medicinal Chemistry.

[52]  William R. Taylor,et al.  A Protein Structure Comparison Methodology , 1996, Comput. Chem..

[53]  J. Board,et al.  Ewald summation techniques in perspective: a survey , 1996 .

[54]  M. Klein,et al.  Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .

[55]  T. Högberg,et al.  Synthesis of [methoxy-3H]- and [methoxy-11C]- labelled raclopride. Specific dopamine-D2 receptor ligands , 1987 .

[56]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[57]  V. Rastija,et al.  Effect of information leakage and method of splitting (rational and random) on external predictive ability and behavior of different statistical parameters of QSAR model , 2014, Medicinal Chemistry Research.

[58]  Paola Gramatica,et al.  On the development and validation of QSAR models. , 2013, Methods in molecular biology.

[59]  F. Lombardo,et al.  Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. , 2001, Advanced drug delivery reviews.