Salient Object Detection via Augmented Hypotheses

In this paper, we propose using augmented hypotheses which consider objectness, foreground and compactness for salient object detection. Our algorithm consists of four basic steps. First, our method generates the objectness map via objectness hypotheses. Based on the objectness map, we estimate the foreground margin and compute the corresponding foreground map which prefers the foreground objects. From the objectness map and the foreground map, the compactness map is formed to favor the compact objects. We then derive a saliency measure that produces a pixel-accurate saliency map which uniformly covers the objects of interest and consistently separates fore-and background. We finally evaluate the proposed framework on two challenging datasets, MSRA- 1000 and iCoSeg. Our extensive experimental results show that our method outperforms state-of-the-art approaches.

[1]  Thomas Deselaers,et al.  Measuring the Objectness of Image Windows , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[3]  Shi-Min Hu,et al.  Global contrast based salient region detection , 2011, CVPR 2011.

[4]  Naila Murray,et al.  Saliency estimation using a non-parametric low-level vision model , 2011, CVPR 2011.

[5]  Shi-Min Hu,et al.  Global Contrast Based Salient Region Detection , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Danica Kragic,et al.  International Conference on Computer Vision Systems , 2015 .

[7]  Tim K Marks,et al.  SUN: A Bayesian framework for saliency using natural statistics. , 2008, Journal of vision.

[8]  Shuicheng Yan,et al.  STAP: Spatial-Temporal Attention-Aware Pooling for Action Recognition , 2015, IEEE Transactions on Circuits and Systems for Video Technology.

[9]  Philip H. S. Torr,et al.  BING: Binarized normed gradients for objectness estimation at 300fps , 2014, Computational Visual Media.

[10]  Jiebo Luo,et al.  iCoseg: Interactive co-segmentation with intelligent scribble guidance , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[11]  Pietro Perona,et al.  Graph-Based Visual Saliency , 2006, NIPS.

[12]  Vibhav Vineet,et al.  Efficient Salient Region Detection with Soft Image Abstraction , 2013, 2013 IEEE International Conference on Computer Vision.

[13]  Mubarak Shah,et al.  Visual attention detection in video sequences using spatiotemporal cues , 2006, MM '06.

[14]  John K. Tsotsos,et al.  Saliency Based on Information Maximization , 2005, NIPS.

[15]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[16]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[17]  Pascal Fua,et al.  SLIC Superpixels Compared to State-of-the-Art Superpixel Methods , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Qiang Chen,et al.  Hierarchical matching with side information for image classification , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  Liqing Zhang,et al.  Saliency Detection: A Spectral Residual Approach , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Yael Pritch,et al.  Saliency filters: Contrast based filtering for salient region detection , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[21]  Lihi Zelnik-Manor,et al.  Context-aware saliency detection , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[22]  Harish Katti,et al.  Depth Matters: Influence of Depth Cues on Visual Saliency , 2012, ECCV.

[23]  Sabine Süsstrunk,et al.  Frequency-tuned salient region detection , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[24]  ZissermanAndrew,et al.  The Pascal Visual Object Classes Challenge , 2015 .

[25]  HongJiang Zhang,et al.  Contrast-based image attention analysis by using fuzzy growing , 2003, MULTIMEDIA '03.

[26]  Mohan S. Kankanhalli,et al.  Audio Matters in Visual Attention , 2014, IEEE Transactions on Circuits and Systems for Video Technology.

[27]  Sabine Süsstrunk,et al.  Salient Region Detection and Segmentation , 2008, ICVS.

[28]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[29]  Bingbing Ni,et al.  Image Re-Attentionizing , 2013, IEEE Transactions on Multimedia.

[30]  Mohan S. Kankanhalli,et al.  Static saliency vs. dynamic saliency: a comparative study , 2013, ACM Multimedia.

[31]  Sabine Süsstrunk,et al.  Saliency detection using maximum symmetric surround , 2010, 2010 IEEE International Conference on Image Processing.

[32]  Christoph H. Lampert,et al.  Beyond sliding windows: Object localization by efficient subwindow search , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[33]  Koen E. A. van de Sande,et al.  Selective Search for Object Recognition , 2013, International Journal of Computer Vision.