A branch-and-cut algorithm for a class of sum-of-ratios problems

The problem of maximizing a sum of concave-convex ratios over a convex set is addressed. The projection of the problem onto the image space of the functions that describe the ratios leads to the equivalent problem of maximizing a sum of elementary ratios subject to a linear semi-infinite inequality constraint. A global optimization algorithm that integrates a branch-and-bound procedure for dealing with nonconcavities in the image space and an efficient relaxation procedure for handling the semi-infinite constraint is proposed and illustrated through numerical examples. Comparative (computational) analyses between the proposed algorithm and two alternative algorithms for solving sum-of-ratios problems are also presented.

[1]  Harold P. Benson,et al.  Global Optimization of Nonlinear Sums of Ratios , 2001 .

[2]  Li Jin,et al.  Global Optimization for a Class of Nonlinear Sum of Ratios Problem , 2014 .

[3]  S. Schaible Fractional programming: Applications and algorithms , 1981 .

[4]  Takahito Kuno,et al.  A branch-and-bound algorithm for maximizing the sum of several linear ratios , 2002, J. Glob. Optim..

[5]  Harold P. Benson,et al.  A simplicial branch and bound duality-bounds algorithm for the linear sum-of-ratios problem , 2007, Eur. J. Oper. Res..

[6]  Rúbia M. Oliveira,et al.  A convex analysis approach for convex multiplicative programming , 2008, J. Glob. Optim..

[7]  Arthur M. Geoffrion,et al.  Elements of Large-Scale Mathematical Programming Part I: Concepts , 1970 .

[8]  Paulo A. V. Ferreira,et al.  On the Solution of Generalized Multiplicative Extremum Problems , 2011, J. Optim. Theory Appl..

[9]  Roland W. Freund,et al.  Solving the Sum-of-Ratios Problem by an Interior-Point Method , 2001, J. Glob. Optim..

[10]  H. Konno,et al.  Minimizing sums and products of linear fractional functions over a polytope , 1999 .

[11]  HAROLD P. BENSON Using concave envelopes to globally solve the nonlinear sum of ratios problem , 2002, J. Glob. Optim..

[12]  R. Horst,et al.  Solving sum-of-ratios fractional programs using efficient points , 2001 .

[13]  Peiping Shen,et al.  Using conical partition to globally maximizing the nonlinear sum of ratios , 2010 .

[14]  XueGang Zhou,et al.  Global Optimization for the Sum of Concave-Convex Ratios Problem , 2014, J. Appl. Math..

[15]  Rúbia M. Oliveira,et al.  An outcome space approach for generalized convex multiplicative programs , 2010, J. Glob. Optim..

[16]  Yijun Li,et al.  A global optimization algorithm for sum of quadratic ratios problem with coefficients , 2012, Appl. Math. Comput..

[17]  Siegfried Schaible,et al.  Fractional programming: The sum-of-ratios case , 2003, Optim. Methods Softw..

[18]  Kecun Zhang,et al.  Global optimization of nonlinear sum of ratios problem , 2004, Appl. Math. Comput..

[19]  Riccardo Cambini,et al.  A unifying approach to solve some classes of rank-three multiplicative and fractional programs involving linear functions , 2010, Eur. J. Oper. Res..

[20]  Susan W. Palocsay,et al.  Image space analysis of generalized fractional programs , 1994, J. Glob. Optim..

[21]  Christodoulos A. Floudas,et al.  Finding all solutions of nonlinearly constrained systems of equations , 1995, J. Glob. Optim..

[22]  Harold P. Benson,et al.  An Outcome Space Branch and Bound-Outer Approximation Algorithm for Convex Multiplicative Programming , 1999, J. Glob. Optim..

[23]  Chun-Feng Wang,et al.  A global optimization algorithm for linear fractional programming , 2008, Appl. Math. Comput..

[24]  H. P. Benson,et al.  Global Optimization Algorithm for the Nonlinear Sum of Ratios Problem , 2002 .

[25]  Kenneth O. Kortanek,et al.  Semi-Infinite Programming: Theory, Methods, and Applications , 1993, SIAM Rev..