暂无分享,去创建一个
[1] Emmanuel J. Candès,et al. Randomized Algorithms for Low-Rank Matrix Factorizations: Sharp Performance Bounds , 2013, Algorithmica.
[2] Mark Tygert,et al. An implementation of a randomized algorithm for principal component analysis , 2014, ArXiv.
[3] David P. Woodruff. Sketching as a Tool for Numerical Linear Algebra , 2014, Found. Trends Theor. Comput. Sci..
[4] Y. Saad. On the Rates of Convergence of the Lanczos and the Block-Lanczos Methods , 1980 .
[5] Siam J. Sci,et al. SUBSPACE ITERATION RANDOMIZATION AND SINGULAR VALUE PROBLEMS , 2015 .
[6] Michael W. Mahoney,et al. Low-distortion subspace embeddings in input-sparsity time and applications to robust linear regression , 2012, STOC '13.
[7] Santosh S. Vempala,et al. Latent semantic indexing: a probabilistic analysis , 1998, PODS '98.
[8] David P. Woodruff,et al. Low rank approximation and regression in input sparsity time , 2013, STOC '13.
[9] Huy L. Nguyen,et al. OSNAP: Faster Numerical Linear Algebra Algorithms via Sparser Subspace Embeddings , 2012, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.
[10] H. Rutishauser. Simultaneous iteration method for symmetric matrices , 1970 .
[11] Nathan Halko,et al. An Algorithm for the Principal Component Analysis of Large Data Sets , 2010, SIAM J. Sci. Comput..
[12] Philipp Birken,et al. Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.
[13] F. L. Bauer. Das Verfahren der Treppeniteration und verwandte Verfahren zur Lösung algebraischer Eigenwertprobleme , 1957 .
[14] Alan M. Frieze,et al. Clustering Large Graphs via the Singular Value Decomposition , 2004, Machine Learning.
[15] Michael B. Cohen,et al. Dimensionality Reduction for k-Means Clustering and Low Rank Approximation , 2014, STOC.
[16] A. Rantzer,et al. On the Minimum Rank of a Generalized Matrix Approximation Problem in the Maximum Singular Value Norm , 2010 .
[17] Nathan Halko,et al. Randomized methods for computing low-rank approximations of matrices , 2012 .
[18] Santosh S. Vempala,et al. Adaptive Sampling and Fast Low-Rank Matrix Approximation , 2006, APPROX-RANDOM.
[19] V. Rokhlin,et al. A randomized algorithm for the approximation of matrices , 2006 .
[20] Franklin T. Luk,et al. A Block Lanczos Method for Computing the Singular Values and Corresponding Singular Vectors of a Matrix , 1981, TOMS.
[21] Charles Elkan,et al. Fast Algorithms for Approximating the Singular Value Decomposition , 2011, TKDD.
[22] Mark Tygert,et al. A Randomized Algorithm for Principal Component Analysis , 2008, SIAM J. Matrix Anal. Appl..
[23] M. Rudelson,et al. Non-asymptotic theory of random matrices: extreme singular values , 2010, 1003.2990.
[24] Petros Drineas,et al. FAST MONTE CARLO ALGORITHMS FOR MATRICES II: COMPUTING A LOW-RANK APPROXIMATION TO A MATRIX∗ , 2004 .
[25] J. Cullum,et al. A block Lanczos algorithm for computing the q algebraically largest eigenvalues and a corresponding eigenspace of large, sparse, real symmetric matrices , 1974, CDC 1974.
[26] Tamás Sarlós,et al. Improved Approximation Algorithms for Large Matrices via Random Projections , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).
[27] Nathan Halko,et al. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..
[28] Christos Boutsidis,et al. Near-Optimal Column-Based Matrix Reconstruction , 2014, SIAM J. Comput..
[29] Alan M. Frieze,et al. Fast Monte-Carlo algorithms for finding low-rank approximations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).
[30] Gene H. Golub,et al. The block Lanczos method for computing eigenvalues , 2007, Milestones in Matrix Computation.
[31] Ming Gu,et al. Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization , 1996, SIAM J. Sci. Comput..
[32] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .
[33] L. Mirsky. SYMMETRIC GAUGE FUNCTIONS AND UNITARILY INVARIANT NORMS , 1960 .
[34] Gene H. Golub,et al. Matrix computations , 1983 .