Stronger Approximate Singular Value Decomposition via the Block Lanczos and Power Methods

We re-analyze Simultaneous Power Iteration and the Block Lanczos method, two classical iterative algorithms for the singular value decomposition (SVD). We are interested in convergence bounds that do not depend on properties of the input matrix (e.g. singular value gaps). Simultaneous Iteration is known to give a low rank approximation within (1 + ǫ) of optimal for spectral norm error in Õ(1/ǫ) iterations. We strengthen this result, proving that it finds approximate principal components very close in quality to those given by an exact SVD. Our work bridges a divide between classical analysis, which can give similar bounds but depends critically on singular value gaps, and more recent work, which only focuses on low rank approximation Furthermore, we extend our bounds to the Block Lanczos method, which we show obtains the same approximation guarantees in just Õ(1/ √ ǫ) iterations, giving the fastest known algorithm for spectral norm low rank approximation and principal component approximation. Despite their popularity, Krylov subspace methods like Block Lanczos previously seemed more difficult to analyze and did not come with rigorous gap-independent guarantees. Finally, we give insight beyond the worst case, justifying why Simultaneous Power Iteration and Block Lanczos can run much faster in practice than predicted. We clarify how simple techniques can potentially accelerate both algorithms significantly.

[1]  Emmanuel J. Candès,et al.  Randomized Algorithms for Low-Rank Matrix Factorizations: Sharp Performance Bounds , 2013, Algorithmica.

[2]  Mark Tygert,et al.  An implementation of a randomized algorithm for principal component analysis , 2014, ArXiv.

[3]  David P. Woodruff Sketching as a Tool for Numerical Linear Algebra , 2014, Found. Trends Theor. Comput. Sci..

[4]  Y. Saad On the Rates of Convergence of the Lanczos and the Block-Lanczos Methods , 1980 .

[5]  Siam J. Sci,et al.  SUBSPACE ITERATION RANDOMIZATION AND SINGULAR VALUE PROBLEMS , 2015 .

[6]  Michael W. Mahoney,et al.  Low-distortion subspace embeddings in input-sparsity time and applications to robust linear regression , 2012, STOC '13.

[7]  Santosh S. Vempala,et al.  Latent semantic indexing: a probabilistic analysis , 1998, PODS '98.

[8]  David P. Woodruff,et al.  Low rank approximation and regression in input sparsity time , 2013, STOC '13.

[9]  Huy L. Nguyen,et al.  OSNAP: Faster Numerical Linear Algebra Algorithms via Sparser Subspace Embeddings , 2012, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[10]  H. Rutishauser Simultaneous iteration method for symmetric matrices , 1970 .

[11]  Nathan Halko,et al.  An Algorithm for the Principal Component Analysis of Large Data Sets , 2010, SIAM J. Sci. Comput..

[12]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[13]  F. L. Bauer Das Verfahren der Treppeniteration und verwandte Verfahren zur Lösung algebraischer Eigenwertprobleme , 1957 .

[14]  Alan M. Frieze,et al.  Clustering Large Graphs via the Singular Value Decomposition , 2004, Machine Learning.

[15]  Michael B. Cohen,et al.  Dimensionality Reduction for k-Means Clustering and Low Rank Approximation , 2014, STOC.

[16]  A. Rantzer,et al.  On the Minimum Rank of a Generalized Matrix Approximation Problem in the Maximum Singular Value Norm , 2010 .

[17]  Nathan Halko,et al.  Randomized methods for computing low-rank approximations of matrices , 2012 .

[18]  Santosh S. Vempala,et al.  Adaptive Sampling and Fast Low-Rank Matrix Approximation , 2006, APPROX-RANDOM.

[19]  V. Rokhlin,et al.  A randomized algorithm for the approximation of matrices , 2006 .

[20]  Franklin T. Luk,et al.  A Block Lanczos Method for Computing the Singular Values and Corresponding Singular Vectors of a Matrix , 1981, TOMS.

[21]  Charles Elkan,et al.  Fast Algorithms for Approximating the Singular Value Decomposition , 2011, TKDD.

[22]  Mark Tygert,et al.  A Randomized Algorithm for Principal Component Analysis , 2008, SIAM J. Matrix Anal. Appl..

[23]  M. Rudelson,et al.  Non-asymptotic theory of random matrices: extreme singular values , 2010, 1003.2990.

[24]  Petros Drineas,et al.  FAST MONTE CARLO ALGORITHMS FOR MATRICES II: COMPUTING A LOW-RANK APPROXIMATION TO A MATRIX∗ , 2004 .

[25]  J. Cullum,et al.  A block Lanczos algorithm for computing the q algebraically largest eigenvalues and a corresponding eigenspace of large, sparse, real symmetric matrices , 1974, CDC 1974.

[26]  Tamás Sarlós,et al.  Improved Approximation Algorithms for Large Matrices via Random Projections , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[27]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[28]  Christos Boutsidis,et al.  Near-Optimal Column-Based Matrix Reconstruction , 2014, SIAM J. Comput..

[29]  Alan M. Frieze,et al.  Fast Monte-Carlo algorithms for finding low-rank approximations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[30]  Gene H. Golub,et al.  The block Lanczos method for computing eigenvalues , 2007, Milestones in Matrix Computation.

[31]  Ming Gu,et al.  Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization , 1996, SIAM J. Sci. Comput..

[32]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .

[33]  L. Mirsky SYMMETRIC GAUGE FUNCTIONS AND UNITARILY INVARIANT NORMS , 1960 .

[34]  Gene H. Golub,et al.  Matrix computations , 1983 .