Fluorobenzene diluted low-density electrolyte for high-energy density and high-performance lithium-sulfur batteries

[1]  Jiaqi Huang,et al.  Promoting the Sulfur Redox Kinetics by Mixed Organodiselenides in High-Energy-Density Lithium–Sulfur Batteries , 2021, eScience.

[2]  M. Seo,et al.  Metal-Organic Frameworks Reinforce the Carbon Nanotube Sponge-Derived Robust Three-Dimensional Sulfur Host for Lithium-Sulfur Batteries. , 2021, ACS applied materials & interfaces.

[3]  Yunhui Huang,et al.  The Failure Mechanism of Lithium-Sulfur Batteries under Lean-Ether-Electrolyte Conditions , 2021 .

[4]  J. Lee,et al.  Mediator–Assisted Catalysis of Polysulfide Conversion for High–Loading Lithium–Sulfur Batteries Operating Under the Lean Electrolyte Condition , 2021 .

[5]  Yong‐Sheng Hu,et al.  Ultralight Electrolyte for High-Energy Lithium-Sulfur Pouch Cells. , 2021, Angewandte Chemie.

[6]  Shijie Cheng,et al.  Diluted High Concentration Electrolyte with Dual Effects for Practical Lithium-Sulfur Batteries , 2021 .

[7]  T. Zhao,et al.  Achieving multiplexed functionality in a hierarchical MXene-based sulfur host for high-rate, high-loading lithium-sulfur batteries , 2020 .

[8]  K. Amine,et al.  A high-energy and long-cycling lithium–sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites , 2020, Nature Nanotechnology.

[9]  Jiulin Wang,et al.  Dense and high loading sulfurized pyrolyzed poly (acrylonitrile)(S@pPAN) cathode for rechargeable lithium batteries , 2020 .

[10]  Li Yang,et al.  Fluorobenzene, A Low‐Density, Economical, and Bifunctional Hydrocarbon Cosolvent for Practical Lithium Metal Batteries , 2020, Advanced Functional Materials.

[11]  R. Wen,et al.  Reconfiguring Organosulfur Cathode by Over-Lithiation to Enable Ultra-Thick Lithium Metal Anode towards Practical Lithium-Sulfur Batteries. , 2020, ACS nano.

[12]  M. Xiao,et al.  Comprehensive evaluation of safety performance and failure mechanism analysis for lithium sulfur pouch cells , 2020 .

[13]  Z. Seh,et al.  Fast conversion and controlled deposition of lithium (poly)sulfides in lithium-sulfur batteries using high-loading cobalt single atoms , 2020 .

[14]  Hong‐Jie Peng,et al.  Lithium–Sulfur Batteries under Lean Electrolyte Conditions: Challenges and Opportunities , 2020 .

[15]  Shijie Cheng,et al.  Selenium or Tellurium as Eutectic Accelerators for High-Performance Lithium/Sodium–Sulfur Batteries , 2020, Electrochemical Energy Reviews.

[16]  Xiulin Fan,et al.  A chemically stabilized sulfur cathode for lean electrolyte lithium sulfur batteries , 2020, Proceedings of the National Academy of Sciences.

[17]  David G. Mackanic,et al.  Electrode Design with Integration of High Tortuosity and Sulfur-Philicity for High-Performance Lithium-Sulfur Battery , 2020, Matter.

[18]  J. Choi,et al.  Fluorinated Aromatic Diluent for High-Performance Lithium Metal Batteries. , 2020, Angewandte Chemie.

[19]  Jiulin Wang,et al.  Towards practical Li–S battery with dense and flexible electrode containing lean electrolyte , 2020 .

[20]  YunKyoung Kim,et al.  Unraveling the Dual Functionality of High‐Donor‐Number Anion in Lean‐Electrolyte Lithium‐Sulfur Batteries , 2020, Advanced Energy Materials.

[21]  B. Hwang,et al.  Mechanistic understanding of the Sulfurized-Poly(acrylonitrile) cathode for lithium-sulfur batteries , 2020 .

[22]  Shuang Li,et al.  Revealing the Rapid Electrocatalytic Behavior of Ultrafine Amorphous Defective Nb2O5-x Nanocluster towards Superior Li-S Performance. , 2020, ACS nano.

[23]  H. Althues,et al.  Challenges and Key Parameters of Lithium-Sulfur Batteries on Pouch Cell Level , 2020, Joule.

[24]  Yi Cui,et al.  High-Energy-Density Solid-Electrolyte-Based Liquid Li-S and Li-Se Batteries , 2020 .

[25]  Z. Seh,et al.  Enhanced Chemical Immobilization and Catalytic Conversion of Polysulfide Intermediates Using Metallic Mo Nanoclusters for High-Performance Li-S Batteries. , 2019, ACS Nano.

[26]  J. Lee,et al.  Stepwise Electrocatalysis as a Strategy against Polysulfide Shuttling in Li-S Batteries. , 2019, ACS nano.

[27]  Ping Liu,et al.  Cathode electrolyte interface enabling stable Li–S batteries , 2019, Energy Storage Materials.

[28]  Yulong Sun,et al.  Facile Generation of Polymer-Alloy Hybrid Layer towards Dendrite-free Lithium Metal Anode with Improved Moisture Stability. , 2019, Angewandte Chemie.

[29]  A. Manthiram,et al.  A review on the status and challenges of electrocatalysts in lithium-sulfur batteries , 2019, Energy Storage Materials.

[30]  B. Shan,et al.  Manipulating kinetics of sulfurized polyacrylonitrile with tellurium as eutectic accelerator to prevent polysulfide dissolution in lithium-sulfur battery under dissolution-deposition mechanism , 2019, Nano Energy.

[31]  Jingwei Xiang,et al.  Ether-compatible sulfurized polyacrylonitrile cathode with excellent performance enabled by fast kinetics via selenium doping , 2019, Nature Communications.

[32]  Hailiang Wang,et al.  Electrocatalysis in Lithium Sulfur Batteries under Lean Electrolyte Conditions. , 2018, Angewandte Chemie.

[33]  Ji-Guang Zhang,et al.  Tailored Reaction Route by Micropore Confinement for Li–S Batteries Operating under Lean Electrolyte Conditions , 2018 .

[34]  Arumugam Manthiram,et al.  Progress on the Critical Parameters for Lithium–Sulfur Batteries to be Practically Viable , 2018, Advanced Functional Materials.

[35]  K. Sun,et al.  Effect of Electrolyte on High Sulfur Loading Li-S Batteries , 2018 .

[36]  Jiaqi Huang,et al.  Toward Practical High‐Energy Batteries: A Modular‐Assembled Oval‐Like Carbon Microstructure for Thick Sulfur Electrodes , 2017, Advanced materials.

[37]  Su Zhang,et al.  Robust electrical “highway” network for high mass loading sulfur cathode , 2017 .

[38]  Jiaqi Huang,et al.  Sulfur Nanodots Stitched in 2D "Bubble-Like" Interconnected Carbon Fabric as Reversibility-Enhanced Cathodes for Lithium-Sulfur Batteries. , 2017, ACS nano.

[39]  Feixiang Wu,et al.  Enhancing the Stability of Sulfur Cathodes in Li–S Cells via in Situ Formation of a Solid Electrolyte Layer , 2016 .

[40]  Jens Tübke,et al.  Cell energy density and electrolyte/sulfur ratio in Li–S cells , 2014 .

[41]  Arumugam Manthiram,et al.  Rechargeable lithium-sulfur batteries. , 2014, Chemical reviews.

[42]  Dongmin Im,et al.  A Highly Reversible Lithium Metal Anode , 2014, Scientific Reports.

[43]  Michel Armand,et al.  A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries , 2013, Nature Communications.

[44]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[45]  Jiaqi Huang,et al.  Evaluation on a 400 Wh kg−1 lithium–sulfur pouch cell , 2022 .

[46]  Jiulin Wang,et al.  Sulfur‐Based Composite Cathode Materials for High‐Energy Rechargeable Lithium Batteries , 2015, Advanced materials.