Invariant domain preserving discretization-independent schemes and convex limiting for hyperbolic systems

Abstract We introduce an approximation technique for nonlinear hyperbolic systems with sources that is invariant domain preserving. The method is discretization-independent provided elementary symmetry and skew-symmetry properties are satisfied by the scheme. The method is formally first-order accurate in space. Then, we introduce a series of higher-order methods. When these methods violate the invariant domain properties, they are corrected by a limiting technique that we call convex limiting. After limiting, the resulting methods satisfy all the invariant domain properties that are imposed by the user (see Theorem 7.24) and is formally high-order accurate. The two key novelties are that (i) limiting is done by enforcing bounds on quasiconcave functionals; (ii) the bounds that are enforced on the solution at each time step are necessarily satisfied by the low-order approximation.

[1]  Jean-Luc Guermond,et al.  Well-Balanced Second-Order Finite Element Approximation of the Shallow Water Equations with Friction , 2018, SIAM J. Sci. Comput..

[2]  Thomas Eugene Voth,et al.  Generalized Fourier analyses of the advection–diffusion equation—Part I: one‐dimensional domains , 2004 .

[3]  Benoît Perthame,et al.  Maximum principle on the entropy and second-order kinetic schemes , 1994 .

[4]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[5]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.

[6]  P. E. Bernatz,et al.  How conservative? , 1971, The Annals of thoracic surgery.

[7]  Antony Jameson,et al.  Origins and Further Development of the Jameson–Schmidt–Turkel Scheme , 2017 .

[8]  A. Bressan Hyperbolic Systems of Conservation Laws , 1999 .

[9]  K. W. Morton,et al.  Finite volume methods for hyperbolic conservation laws , 2007, Acta Numerica.

[10]  P. Lax Hyperbolic systems of conservation laws II , 1957 .

[11]  A. Harten On the symmetric form of systems of conservation laws with entropy , 1983 .

[12]  S. Zalesak Introduction to “Flux-Corrected Transport. I. SHASTA, A Fluid Transport Algorithm That Works” , 1997 .

[13]  Bojan Popov,et al.  Fast estimation from above of the maximum wave speed in the Riemann problem for the Euler equations , 2015, J. Comput. Phys..

[14]  Chi-Wang Shu,et al.  High Order Strong Stability Preserving Time Discretizations , 2009, J. Sci. Comput..

[15]  Xiangxiong Zhang,et al.  Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms , 2011, J. Comput. Phys..

[16]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[17]  H. Frid Maps of Convex Sets and Invariant Regions¶for Finite-Difference Systems¶of Conservation Laws , 2001 .

[18]  M. N. Spijker,et al.  An extension and analysis of the Shu-Osher representation of Runge-Kutta methods , 2004, Math. Comput..

[19]  Xiangxiong Zhang,et al.  A minimum entropy principle of high order schemes for gas dynamics equations , 2011, Numerische Mathematik.

[20]  Gabriel R. Barrenechea,et al.  Edge-based nonlinear diffusion for finite element approximations of convection–diffusion equations and its relation to algebraic flux-correction schemes , 2015, Numerische Mathematik.

[21]  P. Lax,et al.  Systems of conservation laws , 1960 .

[22]  Alfredo Bermúdez,et al.  Upwind methods for hyperbolic conservation laws with source terms , 1994 .

[23]  Stefan Turek,et al.  Flux-Corrected Transport , 2005 .

[24]  J. Boris,et al.  Flux-Corrected Transport , 1997 .

[25]  Yong Yang,et al.  A Second-Order Maximum Principle Preserving Lagrange Finite Element Technique for Nonlinear Scalar Conservation Equations , 2014, SIAM J. Numer. Anal..

[26]  Jean-Luc Guermond,et al.  Invariant Domains and Second-Order Continuous Finite Element Approximation for Scalar Conservation Equations , 2017, SIAM J. Numer. Anal..

[27]  M. Berger,et al.  Analysis of Slope Limiters on Irregular Grids , 2005 .

[28]  D. Serre,et al.  Geometric structures, oscillations, and initial-boundary value problems , 2000 .

[29]  A. Jameson,et al.  Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .

[30]  Chi-Wang Shu,et al.  On positivity preserving finite volume schemes for Euler equations , 1996 .

[31]  ShuChi-Wang,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes, II , 1989 .

[32]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[33]  Michael S. Floater,et al.  Generalized barycentric coordinates and applications * , 2015, Acta Numerica.

[34]  Leon Bieber,et al.  Numerical Schemes For Conservation Laws , 2016 .

[35]  Tai-Ping Liu,et al.  A conservative, piecewise-steady difference scheme for transonic nozzle flow , 1986 .

[36]  David Hoff,et al.  A finite difference scheme for a system of two conservation laws with artificial viscosity , 1979 .

[37]  Benoît Perthame,et al.  A variant of Van Leer's method for multidimensional systems of conservation laws , 1994 .

[38]  J. Greenberg,et al.  A well-balanced scheme for the numerical processing of source terms in hyperbolic equations , 1996 .

[39]  Jean-Luc Guermond,et al.  Well-Balanced Second-Order Approximation of the Shallow Water Equation with Continuous Finite Elements , 2017, SIAM J. Numer. Anal..

[40]  Takaaki Nishida,et al.  Global solution for an initial boundary value problem of a quasilinear hyperbolic system , 1968 .

[41]  Jean-Luc Guermond,et al.  A correction technique for the dispersive effects of mass lumping for transport problems , 2013 .

[42]  S. Zalesak Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .

[43]  D. Hoff Invariant regions for systems of conservation laws , 1985 .

[44]  Inmaculada Higueras,et al.  Representations of Runge-Kutta Methods and Strong Stability Preserving Methods , 2005, SIAM J. Numer. Anal..

[45]  Jay P. Boris,et al.  Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works , 1973 .

[46]  Stefan Turek,et al.  Flux-corrected transport : principles, algorithms, and applications , 2005 .

[47]  T. Barth,et al.  Finite Volume Methods: Foundation and Analysis , 2004 .

[48]  Erik Burman,et al.  On nonlinear artificial viscosity, discrete maximum principle and hyperbolic conservation laws , 2007 .

[49]  Bojan Popov,et al.  Invariant Domains and First-Order Continuous Finite Element Approximation for Hyperbolic Systems , 2015, SIAM J. Numer. Anal..

[50]  Jean-Luc Guermond,et al.  Second-Order Invariant Domain Preserving Approximation of the Euler Equations Using Convex Limiting , 2017, SIAM J. Sci. Comput..

[51]  Ami Harten,et al.  Convex Entropies and Hyperbolicity for General Euler Equations , 1998 .

[52]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[53]  With Invariant Submanifolds,et al.  Systems of Conservation Laws , 2009 .

[54]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[55]  Xiangxiong Zhang,et al.  On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes , 2010, J. Comput. Phys..