The incorporation and migration of a single xenon atom in ceria

[1]  Christopher M Wolverton,et al.  Pathway and energetics of xenon migration in uranium dioxide , 2013 .

[2]  L. V. Brutzel,et al.  Free energy of Xe incorporation at point defects and in nanovoids and bubbles in UO2 , 2012 .

[3]  Dieter Wolf,et al.  Comparison of point-defect clustering in irradiated CeO2 and UO2: A unified view from molecular dynamics simulations and experiments , 2011 .

[4]  J. Rest,et al.  Kr and Xe irradiations in lanthanum (La) doped ceria: Study at the high dose regime , 2011 .

[5]  Blas P. Uberuaga,et al.  U and Xe transport in UO2±x: Density functional theory calculations , 2011 .

[6]  D. Yun,et al.  Kinetic Monte Carlo model of defect transport and irradiation effects in La-doped CeO2 , 2011 .

[7]  J. Rest,et al.  TEM investigation of irradiation damage in single crystal CeO2 , 2011 .

[8]  A. Pasturel,et al.  Fission products stability in uranium dioxide , 2011 .

[9]  M. Verwerft,et al.  On the solution and migration of single Xe atoms in uranium dioxide – An interatomic potentials study , 2010 .

[10]  K. Yasuda,et al.  Molecular dynamics simulations of oxygen Frenkel pairs in cerium dioxide , 2010 .

[11]  L. V. Brutzel,et al.  Atomistic study of stability of xenon nanoclusters in uranium oxide , 2010 .

[12]  B. Uberuaga,et al.  Thermodynamics of fission products in UO2 ± x , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[13]  Olle Eriksson,et al.  First-principles theory for helium and xenon diffusion in uranium dioxide , 2009 .

[14]  Kazuhiro Yasuda,et al.  Atomistic simulation of point defects behavior in ceria , 2008 .

[15]  K. Yasuda,et al.  Electron energy-dependent formation of dislocation loops in CeO2 , 2008 .

[16]  Marc Hou,et al.  Comparison of interatomic potentials for UO2. Part II: Molecular dynamics simulations , 2008 .

[17]  M. Baudin,et al.  Molecular dynamics study of oxygen self-diffusion in reduced CeO2 , 2007 .

[18]  Marc Hou,et al.  Comparison of interatomic potentials for UO2. Part I: Static calculations , 2007 .

[19]  K. Yasuda,et al.  Nucleation and growth of defect clusters in CeO2 irradiated with electrons , 2006 .

[20]  M. Kinoshita,et al.  Electronic excitation effects in CeO2 under irradiations with high-energy ions of typical fission products , 2006 .

[21]  Julian D. Gale,et al.  The General Utility Lattice Program (GULP) , 2003 .

[22]  R. Grimes,et al.  Defect cluster formation in M2O3-doped CeO2 , 1999 .

[23]  Julian D. Gale,et al.  GULP: A computer program for the symmetry-adapted simulation of solids , 1997 .

[24]  Julian D. Gale,et al.  Empirical potential derivation for ionic materials , 1996 .

[25]  C. R. A. Catlow,et al.  A computational study of the effect of Xe concentration on the behaviour of single Xe atoms in UO2 , 1995 .

[26]  S. C. Parker,et al.  Surface oxygen vacancy formation on CeO2 and its role in the oxidation of carbon monoxide , 1992 .

[27]  A. B. Lidiard The Mott–Littleton method: an introductory survey , 1989 .

[28]  C. Catlow,et al.  Dopant ion radius and ionic conductivity in cerium dioxide , 1983 .

[29]  D. Wolf Correlation effects for interstitial-type self-diffusion mechanisms in b.c.c. and f.c.c. crystals , 1983 .

[30]  M. J. Clugston The calculation of intermolecular forces. A critical examination of the Gordon-Kim model , 1978 .

[31]  R. Gordon,et al.  Ion‐rare gas interactions on the repulsive part of the potential curves , 1974 .

[32]  Roy G. Gordon,et al.  Study of the electron gas approximation , 1974 .

[33]  N. F. Mott,et al.  Conduction in polar crystals. I. Electrolytic conduction in solid salts , 1938 .

[34]  John C. Slater,et al.  The Van Der Waals Forces in Gases , 1931 .