Determination of weak Fe+–L bond energies (L = Ar, Kr, Xe, N2, and co2) by ligand exchange reactions and collision-induced dissociation

[1]  J. Harvey,et al.  Equilibrium studies of weakly bound Fe(L)+ complexes with L = Xe, CO2, N2 and CH4 , 1997 .

[2]  Charles W. Bauschlicher,et al.  Theoretical Study of M+−CO2and OM+CO Systems for First Transition Row Metal Atoms , 1997 .

[3]  P. Armentrout,et al.  Gas-Phase Metal Ion Ligation: Collision-Induced Dissociation of Fe(N2)x+ (x = 1−5) and Fe(CH2O)x+ (x = 1−4) , 1997 .

[4]  Brenda L. Tjelta,et al.  Reactions and thermochemistry of small cluster ions: Fe(CS2)n + (n = 1, 2) , 1996 .

[5]  H. Schwarz,et al.  Interaction of the Fe+ cation with heavy noble gas atoms , 1995 .

[6]  K. Morokuma,et al.  Abinitio molecular orbital study of the molecular and electronic structure of FeCH+2 and of the reaction mechanism of FeCH+2+H2 , 1994 .

[7]  D. Bellert,et al.  The binding energy of Ni+·CO2 , 1994 .

[8]  D. Bellert,et al.  The Co+ .CO2 electrostatic complex : geometry and potential , 1994 .

[9]  C. Bauschlicher,et al.  Second-Order Moeller-Plesset Perturbation Theory for Systems Involving First Transition Row Metals , 1994 .

[10]  H. Schwarz,et al.  Gas-phase generation and structural characterization of the Fe(CO2)+ cluster , 1994 .

[11]  P. B. Armentrout,et al.  Solvation of Transition Metal Ions by Water. Sequential Binding Energies of M+(H2O)x (x = 1-4) for M = Ti to Cu Determined by Collision-Induced Dissociation , 1994 .

[12]  C. W. Bauschlicher,et al.  Theoretical Study of the Low-Lying States of TiHe(+),TiNe(+),TiAr(+),VAr(+),CrHe(+),CrAr(+),FeHe(+),FeAr(+),CoHe(+),and CoAr(+) , 1994 .

[13]  P. Armentrout,et al.  Stepwise solvation enthalpies of protonated water clusters: collision-induced dissociation as an alternative to equilibrium studies , 1993 .

[14]  Farooq A. Khan,et al.  Sequential bond energies of chromium carbonyls (Cr(CO)x+, x = 1-6) , 1993 .

[15]  J. Simons,et al.  Understanding heterolytic bond cleavage , 1992 .

[16]  M. Bowers,et al.  Determination of potential energy curves for ground and metastable excited state transition metal ions interacting with helium and neon using electronic state chromatography , 1992 .

[17]  C. Bauschlicher,et al.  Theoretical study of Cr(+) and Co(+) bound to H2 and N2 , 1992 .

[18]  P. Armentrout,et al.  Threshold collisional activation of FeC2H6+: iron(1+)-ethane vs. iron(1+)-dimethyl structures , 1992 .

[19]  M. Bowers,et al.  Transition-metal ion-rare gas clusters : bond strengths and molecular parameters for Co+(He/Ne)n, Ni+(He/Ne)n, and Cr+(He/Ne/Ar) , 1991 .

[20]  P. Armentrout,et al.  Sequential bond energies of Fe(CO)x + (x = 1-5): Systematic effects on collision-induced dissociation measurements , 1991 .

[21]  P. Armentrout,et al.  Reactions of N+4 with rare gases from thermal to 10eV center-of-mass energy: collision-induced dissociation, charge transfer and ligand exchange , 1991 .

[22]  P. Brucat,et al.  Spectroscopically determined binding energies of CrAr+ and Cr(N2)+ , 1991 .

[23]  Sean C. Smith,et al.  Theory of Unimolecular and Recombination Reactions , 1990 .

[24]  C. Bauschlicher,et al.  Comparison of the bonding between ML+ and ML2+ (M=metal, L=noble gas) , 1990 .

[25]  P. Brucat,et al.  Characterization of transition metal-rare-gas cations: VAr + and VKr + , 1989 .

[26]  P. Brucat,et al.  Resonant photodissociation of CoAr+ and CoKr+: Analysis of vibrational structure , 1989 .

[27]  P. Brucat,et al.  On the nature of NiAr , 1988 .

[28]  P. Armentrout,et al.  Reaction of silicon ion (2P) with silane (SiH4, SiD4). Heats of formation of SiHn, SiHn+ (n = 1, 2, 3), and Si2Hn+ (n = 0, 1, 2, 3). Remarkable isotope exchange reaction involving four-hydrogen shifts , 1987 .

[29]  K. Suslick,et al.  Heterogeneous sonocatalysis with nickel powder , 1987 .

[30]  P. Armentrout,et al.  Energy dependence, kinetic isotope effects, and thermochemistry of the nearly thermoneutral reactions N+(3P)+H2(HD,D2)→NH+(ND+)+H(D) , 1987 .

[31]  P. Armentrout,et al.  Reaction mechanisms and thermochemistry of vanadium ions with ethane, ethene and ethyne , 1986 .

[32]  P. Armentrout,et al.  Kinetic energy dependence of Al++O2→AlO++O , 1986 .

[33]  P. Armentrout,et al.  Translational energy dependence of Ar++XY→ArX++Y (XY=H2,D2,HD) from thermal to 30 eV c.m. , 1985 .

[34]  P. Armentrout,et al.  Threshold behavior for chemical reactions: line-of-centers cross section for silicon(1+)(2P) + molecular hydrogen .fwdarw. silicon hydride(1+) (SiH+) + atomic hydrogen , 1984 .

[35]  P. Armentrout,et al.  Threshold behavior of endothermic reactions: C+(2P)+H2 → CH++H , 1984 .

[36]  S. Stein,et al.  On the use of exact state counting methods in RRKM rate calculations , 1977 .

[37]  D. Gerlich,et al.  Integral cross sections for ion—molecule reactions. I. The guided beam technique , 1974 .

[38]  S. Stein,et al.  Accurate evaluation of internal energy level sums and densities including anharmonic oscillators and hindered rotors , 1973 .

[39]  R. Bernstein,et al.  Total Collision Cross Sections for the Interaction of Atomic Beams of Alkali Metals with Gases , 1959 .

[40]  Edward Teller,et al.  Electronic Spectra of Polyatomic Molecules , 1941 .

[41]  B. Freiser Organometallic ion chemistry , 1996 .

[42]  P. Armentrout,et al.  Gas-phase metal ion ligation: collision-induced dissociation of aquairon (Fe(H2O)x+) and iron-methane (Fe(CH4)x+) (x=1-4) , 1993 .

[43]  C. Bauschlicher,et al.  Theoretical study of metal ions bound to He, Ne, and Ar , 1992 .

[44]  S. Lias,et al.  Structure/Reactivity and Thermochemistry of Ions , 1987 .

[45]  Kenneth R. Hall,et al.  Thermodynamic Properties of Key Organic Oxygen Compounds in the Carbon Range C1 to C4. Part 1. Properties of Condensed Phases , 1985 .

[46]  G. Herzberg,et al.  Constants of diatomic molecules , 1979 .

[47]  Takehiko Shimanouchi,et al.  Tables of molecular vibrational frequencies. Consolidated volume II , 1972 .