Mining Graph Patterns

[1]  Jia Wang,et al.  Redundancy-aware maximal cliques , 2013, KDD.

[2]  Charalampos E. Tsourakakis,et al.  Denser than the densest subgraph: extracting optimal quasi-cliques with quality guarantees , 2013, KDD.

[3]  Ashraf Aboulnaga,et al.  Scalable maximum clique computation using MapReduce , 2013, 2013 IEEE 29th International Conference on Data Engineering (ICDE).

[4]  Divesh Srivastava,et al.  Dense subgraph maintenance under streaming edge weight updates for real-time story identification , 2012, The VLDB Journal.

[5]  James Cheng,et al.  Fast algorithms for maximal clique enumeration with limited memory , 2012, KDD.

[6]  Jia Wang,et al.  Truss Decomposition in Massive Networks , 2012, Proc. VLDB Endow..

[7]  Srinivasan Parthasarathy,et al.  Extracting Analyzing and Visualizing Triangle K-Core Motifs within Networks , 2012, 2012 IEEE 28th International Conference on Data Engineering.

[8]  Sergei Vassilvitskii,et al.  Densest Subgraph in Streaming and MapReduce , 2012, Proc. VLDB Endow..

[9]  Geoff Holmes,et al.  Mining frequent closed graphs on evolving data streams , 2011, KDD.

[10]  Charu C. Aggarwal,et al.  Discovering highly reliable subgraphs in uncertain graphs , 2011, KDD.

[11]  James Cheng,et al.  Efficient core decomposition in massive networks , 2011, 2011 IEEE 27th International Conference on Data Engineering.

[12]  Anthony K. H. Tung,et al.  On Triangulation-based Dense Neighborhood Graphs Discovery , 2010, Proc. VLDB Endow..

[13]  Philip S. Yu,et al.  On dense pattern mining in graph streams , 2010, Proc. VLDB Endow..

[14]  Jianzhong Li,et al.  Discovering frequent subgraphs over uncertain graph databases under probabilistic semantics , 2010, KDD.

[15]  Jeffrey Xu Yu,et al.  Finding maximal cliques in massive networks by H*-graph , 2010, SIGMOD Conference.

[16]  Ambuj K. Singh,et al.  GraphSig: A Scalable Approach to Mining Significant Subgraphs in Large Graph Databases , 2009, 2009 IEEE 25th International Conference on Data Engineering.

[17]  Nicole Krämer,et al.  Partial least squares regression for graph mining , 2008, KDD.

[18]  Philip S. Yu,et al.  Mining significant graph patterns by leap search , 2008, SIGMOD Conference.

[19]  Siegfried Nijssen,et al.  What Is Frequent in a Single Graph? , 2007, PAKDD.

[20]  Mohammad Al Hasan,et al.  ORIGAMI: Mining Representative Orthogonal Graph Patterns , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[21]  Ambuj K. Singh,et al.  Efficient Algorithms for Mining Significant Substructures in Graphs with Quality Guarantees , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[22]  Koji Tsuda,et al.  Entire regularization paths for graph data , 2007, ICML '07.

[23]  Jiawei Han,et al.  Discriminative Frequent Pattern Analysis for Effective Classification , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[24]  George Karypis,et al.  A Multi-Level Parallel Implementation of a Program for Finding Frequent Patterns in a Large Sparse Graph , 2007, 2007 IEEE International Parallel and Distributed Processing Symposium.

[25]  Christian Borgelt,et al.  Support Computation for Mining Frequent Subgraphs in a Single Graph , 2007, MLG.

[26]  Kamalakar Karlapalem,et al.  MARGIN: Maximal Frequent Subgraph Mining , 2006, Sixth International Conference on Data Mining (ICDM'06).

[27]  Jiawei Han,et al.  Discovery of Frequent Substructures , 2006 .

[28]  Ravi Kumar,et al.  Discovering Large Dense Subgraphs in Massive Graphs , 2005, VLDB.

[29]  Srinivasan Parthasarathy,et al.  Discovering frequent topological structures from graph datasets , 2005, KDD '05.

[30]  Jiawei Han,et al.  Mining closed relational graphs with connectivity constraints , 2005, 21st International Conference on Data Engineering (ICDE'05).

[31]  Yun Chi,et al.  Mining closed and maximal frequent subtrees from databases of labeled rooted trees , 2005, IEEE Transactions on Knowledge and Data Engineering.

[32]  George Karypis,et al.  Frequent substructure-based approaches for classifying chemical compounds , 2003, IEEE Transactions on Knowledge and Data Engineering.

[33]  Yuji Matsumoto,et al.  An Application of Boosting to Graph Classification , 2004, NIPS.

[34]  Jiong Yang,et al.  SPIN: mining maximal frequent subgraphs from graph databases , 2004, KDD.

[35]  Joost N. Kok,et al.  A quickstart in frequent structure mining can make a difference , 2004, KDD.

[36]  Chen Wang,et al.  Scalable mining of large disk-based graph databases , 2004, KDD.

[37]  Philip S. Yu,et al.  Graph indexing: a frequent structure-based approach , 2004, SIGMOD '04.

[38]  Hiroki Arimura,et al.  Efficient Substructure Discovery from Large Semi-Structured Data , 2001, IEICE Trans. Inf. Syst..

[39]  Wojciech Szpankowski,et al.  An efficient algorithm for detecting frequent subgraphs in biological networks , 2004, ISMB/ECCB.

[40]  Wei Wang,et al.  Efficient mining of frequent subgraphs in the presence of isomorphism , 2003, Third IEEE International Conference on Data Mining.

[41]  Jiawei Han,et al.  CloseGraph: mining closed frequent graph patterns , 2003, KDD '03.

[42]  Takashi Washio,et al.  State of the art of graph-based data mining , 2003, SKDD.

[43]  J. Snoeyink,et al.  Mining Spatial Motifs from Protein Structure Graphs , 2003 .

[44]  Christian Borgelt,et al.  Mining molecular fragments: finding relevant substructures of molecules , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[45]  Jiawei Han,et al.  gSpan: graph-based substructure pattern mining , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[46]  Ehud Gudes,et al.  Computing frequent graph patterns from semistructured data , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[47]  Mohammed J. Zaki Efficiently mining frequent trees in a forest , 2002, KDD.

[48]  George Karypis,et al.  Frequent subgraph discovery , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[49]  Qiming Chen,et al.  PrefixSpan,: mining sequential patterns efficiently by prefix-projected pattern growth , 2001, Proceedings 17th International Conference on Data Engineering.

[50]  Takashi Washio,et al.  An Apriori-Based Algorithm for Mining Frequent Substructures from Graph Data , 2000, PKDD.

[51]  Hannu Toivonen,et al.  Finding Frequent Substructures in Chemical Compounds , 1998, KDD.

[52]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[53]  Lawrence B. Holder,et al.  Substucture Discovery in the SUBDUE System , 1994, KDD Workshop.