Prime values of a sparse polynomial sequence

A distinguishing feature of certain intractable problems in prime number theory is the sparsity of the underlying sequence. Motivated by the general problem of finding primes in sparse polynomial sequences, we give an estimate for the number of primes of the shape x + 2y where y is small.

[1]  J. Maynard PRIMES REPRESENTED BY INCOMPLETE NORM FORMS , 2015, Forum of Mathematics, Pi.

[2]  W. Duke Some problems in multidimensional analytic number theory , 1989 .

[3]  H. Pollard,et al.  The Gaussian Primes , 2014 .

[4]  M. D. Coleman The distribution of points at which norm-forms are prime , 1992 .

[5]  Glyn Harman,et al.  Prime-Detecting Sieves , 2007 .

[6]  M. D. Coleman A zero-free region for the Hecke L -functions , 1990 .

[7]  E. Fogels On The zeros of Hecke's L-functions I , 1962 .

[8]  J. Maynard On the difference between consecutive primes , 2012, 1201.1787.

[9]  Takayoshi Mitsui Generalized Prime Number Theorem , 1956 .

[10]  The polynomial $X^2+Y^4$ captures its primes , 1998, math/9811185.

[11]  H. Montgomery Topics in Multiplicative Number Theory , 1971 .

[12]  D. R. Heath-Brown,et al.  Prime values of $$a^2 + p^4$$a2+p4 , 2017 .

[13]  D. R. Heath-Brown,et al.  On the Representation of Primes by Cubic Polynomials in Two Variables , 2004 .

[14]  P. Shiu A Brun-Titschmarsh theorem for multiplicative functions. , 1980 .

[15]  D. Schindler,et al.  On prime values of binary quadratic forms with a thin variable , 2018, Journal of the London Mathematical Society.

[16]  H. Davenport Multiplicative Number Theory , 1967 .

[17]  D. R. Heath-Brown,et al.  The Theory of the Riemann Zeta-Function , 1987 .

[18]  D. R. Heath-Brown Prime Numbers in Short Intervals and a Generalized Vaughan Identity , 1982, Canadian Journal of Mathematics - Journal Canadien de Mathematiques.

[19]  John B. Friedlander,et al.  Opera De Cribro , 2010 .