New upper bounds for binary covering codes

Abstract Improved upper bounds are presented for K(n, r) , the minimum cardinality of a binary code of length n and covering radius r . The new bounds are obtained by both new and old constructions; in many of these, computer search using simulated annealing and tabu search plays a central role. Some new linear covering codes are also presented. An updated table of upper bounds on K ( n , r ), n ⩽ 64, r ⩽ 12, is given.

[1]  Patric R. J. Östergård,et al.  Constructing covering codes by tabu search , 1997 .

[2]  Patric R. J. Östergård,et al.  Further results on (k, t)-subnormal covering codes , 1992, IEEE Trans. Inf. Theory.

[3]  Patric R. J. Östergård,et al.  Upper bounds for q-ary covering codes , 1991, IEEE Trans. Inf. Theory.

[4]  Ernst M. Gabidulin,et al.  Linear codes with covering radius 2 and other new covering codes , 1991, IEEE Trans. Inf. Theory.

[5]  Patric R. J. Östergård,et al.  A new binary code of length 10 and covering radius 1 , 1991, IEEE Trans. Inf. Theory.

[6]  Bernt Lindström Group Partitions and Mixed Perfect Codes , 1975, Canadian Mathematical Bulletin.

[7]  Patric R. J. Östergård,et al.  Bounds for Binary Codes That Are Multiple Coverings of the Farthest-Off Points , 1995, SIAM J. Discret. Math..

[8]  Gérard D. Cohen,et al.  Covering radius - Survey and recent results , 1985, IEEE Trans. Inf. Theory.

[9]  Richard A. Brualdi,et al.  On the Length of Codes with a Given Covering Radius , 1990 .

[10]  T. Etzion,et al.  Constructions for perfect mixed codes and other covering codes , 1993, IEEE Trans. Inf. Theory.

[11]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[12]  Gérard D. Cohen,et al.  Covering radius 1985-1994 , 1995, Proceedings of 1995 IEEE International Symposium on Information Theory.

[13]  Iiro S. Honkala,et al.  On (k, t) -subnormal covering codes , 1991, IEEE Trans. Inf. Theory.

[14]  R. G. Stanton,et al.  Covering Problems for Dichotomized Matching , 1968 .

[15]  L. T. Wille,et al.  New binary covering codes obtained by simulated annealing , 1996, IEEE Trans. Inf. Theory.

[16]  Iiro S. Honkala,et al.  Bounds for binary multiple covering codes , 1993, Des. Codes Cryptogr..

[17]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[18]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[19]  Patric R. J. Östergård A Coloring Problem in Hamming Spaces , 1997, Eur. J. Comb..

[20]  R. G. Stanton,et al.  Covering Theorems for Vectors with Special Reference to the Case of Four and Five Components , 1969 .

[21]  Clement W. H. Lam,et al.  More Coverings by Rook Domains , 1984, J. Comb. Theory, Ser. A.

[22]  N. J. A. Sloane,et al.  On the covering radius of codes , 1985, IEEE Trans. Inf. Theory.

[23]  Iiro Honkala,et al.  A new construction for covering codes , 1988, IEEE Trans. Inf. Theory.

[24]  Joseph Douglas Horton,et al.  On Covering Sets and Error-Correcting Codes , 1971, J. Comb. Theory, Ser. A.

[25]  Xiang-dong Hou,et al.  Some results on the norm of codes , 1990, IEEE Trans. Inf. Theory.

[26]  L. T. Wille The football pool problem for 6 matches: A new upper bound obtained by simulated annealing , 1987, J. Comb. Theory, Ser. A.

[27]  Antoine Lobstein,et al.  The Length Function: A Revised Table , 1993, Algebraic Coding.

[28]  Solomon W. Golomb,et al.  Rook domains, Latin squares, affine planes, and error-distributing codes , 1964, IEEE Trans. Inf. Theory.

[29]  Wende Chen,et al.  New lower bounds for binary covering codes , 1988 .

[30]  J. H. van Lint,et al.  Covering radius problems , 1988 .

[31]  Andrew R. Barron,et al.  Correction to 'Minimum Complexity Density Estimation' , 1991, IEEE Trans. Inf. Theory.

[32]  N. J. A. Sloane,et al.  Further results on the covering radius of codes , 1986, IEEE Trans. Inf. Theory.

[33]  Patric R. J. Östergård,et al.  New single-error-correcting codes , 1996, IEEE Trans. Inf. Theory.

[34]  Iiro S. Honkala,et al.  Modified bounds for coveting codes , 1991, IEEE Trans. Inf. Theory.