RNA structure analysis : algorithms and applications

RNA STRUCTURE ANALYSIS: ALGORITHMS AND APPLICATIONS

[1]  P. Green,et al.  Ancient conserved regions in new gene sequences and the protein databases. , 1993, Science.

[2]  Graziano Pesole,et al.  PatSearch: a program for the detection of patterns and structural motifs in nucleotide sequences , 2003, Nucleic Acids Res..

[3]  Dan Gusfield Algorithms on Strings, Trees, and Sequences - Computer Science and Computational Biology , 1997 .

[4]  C. Sander,et al.  Comprehensive sequence analysis of the 182 predicted open reading frames of yeast chromosome III , 1992, Protein science : a publication of the Protein Society.

[5]  I. Hofacker,et al.  Consensus folding of aligned sequences as a new measure for the detection of functional RNAs by comparative genomics. , 2004, Journal of molecular biology.

[6]  Michael J. Fischer,et al.  The String-to-String Correction Problem , 1974, JACM.

[7]  S. Eddy,et al.  A computational screen for methylation guide snoRNAs in yeast. , 1999, Science.

[8]  Bin Tian,et al.  A large-scale analysis of mRNA polyadenylation of human and mouse genes , 2005, Nucleic acids research.

[9]  Bjarne Knudsen,et al.  Pfold: RNA Secondary Structure Prediction Using Stochastic Context-Free Grammars , 2003 .

[10]  James R. Cole,et al.  Alignment of possible secondary structures in multiple RNA sequences using simulated annealing , 1996, Comput. Appl. Biosci..

[11]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[12]  Jun Hu,et al.  A method for aligning RNA secondary structures and its application to RNA motif detection , 2005, BMC Bioinformatics.

[13]  Thomas Dandekar,et al.  A software tool-box for analysis of regulatory RNA elements , 2003, Nucleic Acids Res..

[14]  C. Y. Chen,et al.  AU-rich elements: characterization and importance in mRNA degradation. , 1995, Trends in biochemical sciences.

[15]  D. Haussler,et al.  Using multiple alignments and phylogenetic trees to detect RNA secondary structure. , 1996, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[16]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[17]  S. Karlin,et al.  Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Graziano Pesole,et al.  PatSearch: a pattern matcher software that finds functional elements in nucleotide and protein sequences and assesses their statistical significance , 2000, Bioinform..

[19]  S. Le,et al.  Prediction of common secondary structures of RNAs: a genetic algorithm approach. , 2000, Nucleic acids research.

[20]  R. Durbin,et al.  RNA sequence analysis using covariance models. , 1994, Nucleic acids research.

[21]  D. Higgins,et al.  RAGA: RNA sequence alignment by genetic algorithm. , 1997, Nucleic acids research.

[22]  G. Mauri,et al.  An algorithm for finding conserved secondary structure motifs in unaligned RNA sequences , 2008, Journal of Computer Science and Technology.

[23]  S. Kuersten,et al.  The power of the 3′ UTR: translational control and development , 2003, Nature Reviews Genetics.

[24]  D. Ecker,et al.  RNAMotif, an RNA secondary structure definition and search algorithm. , 2001, Nucleic acids research.

[25]  Kaizhong Zhang,et al.  Comparing multiple RNA secondary structures using tree comparisons , 1990, Comput. Appl. Biosci..

[26]  R. C. Underwood,et al.  Stochastic context-free grammars for tRNA modeling. , 1994, Nucleic acids research.

[27]  Hélène Touzet,et al.  Finding the common structure shared by two homologous RNAs , 2003, Bioinform..

[28]  N. Gray,et al.  Regulation of mRNA translation by 5'- and 3'-UTR-binding factors. , 2003, Trends in biochemical sciences.

[29]  D. Lipman,et al.  Improved tools for biological sequence comparison. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[30]  D. Turner,et al.  Dynalign: an algorithm for finding the secondary structure common to two RNA sequences. , 2002, Journal of molecular biology.

[31]  G. Stormo,et al.  A graph theoretical approach for predicting common RNA secondary structure motifs including pseudoknots in unaligned sequences. , 2004, Bioinformatics.

[32]  Sean R. Eddy,et al.  Rfam: an RNA family database , 2003, Nucleic Acids Res..

[33]  Gary D. Stormo,et al.  Phylogenetically enhanced statistical tools for RNA structure prediction , 2000, Bioinform..

[34]  Tala Bakheet,et al.  ARED: human AU-rich element-containing mRNA database reveals an unexpectedly diverse functional repertoire of encoded proteins , 2001, Nucleic Acids Res..

[35]  Daniel Gautheret,et al.  An RNA pattern matching program with enhanced performance and portability , 1994, Comput. Appl. Biosci..

[36]  D. Gautheret,et al.  Direct RNA motif definition and identification from multiple sequence alignments using secondary structure profiles. , 2001, Journal of molecular biology.

[37]  Robert Giegerich,et al.  Local similarity in RNA secondary structures , 2003, Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003.

[38]  Jon D. McAuliffe,et al.  Phylogenetic Shadowing of Primate Sequences to Find Functional Regions of the Human Genome , 2003, Science.

[39]  R. Duronio,et al.  Histone mRNA expression: multiple levels of cell cycle regulation and important developmental consequences. , 2002, Current opinion in cell biology.

[40]  Eugene W. Myers,et al.  Optimal alignments in linear space , 1988, Comput. Appl. Biosci..

[41]  P. Stadler,et al.  Secondary structure prediction for aligned RNA sequences. , 2002, Journal of molecular biology.

[42]  M S Waterman,et al.  Identification of common molecular subsequences. , 1981, Journal of molecular biology.

[43]  J. Sabina,et al.  Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. , 1999, Journal of molecular biology.

[44]  K. Katz,et al.  Introducing RefSeq and LocusLink: curated human genome resources at the NCBI. , 2000, Trends in genetics : TIG.

[45]  K. Lindblad-Toh,et al.  Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals , 2005, Nature.

[46]  D. Landsman,et al.  Statistical analysis of over-represented words in human promoter sequences. , 2004, Nucleic acids research.

[47]  Ivo L. Hofacker,et al.  Vienna RNA secondary structure server , 2003, Nucleic Acids Res..

[48]  E Rivas,et al.  A dynamic programming algorithm for RNA structure prediction including pseudoknots. , 1998, Journal of molecular biology.

[49]  M. Blanchette,et al.  Discovery of regulatory elements by a computational method for phylogenetic footprinting. , 2002, Genome research.

[50]  Michael Q. Zhang,et al.  Identifying tissue-selective transcription factor binding sites in vertebrate promoters. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Graziano Pesole,et al.  UTRdb and UTRsite: specialized databases of sequences and functional elements of 5' and 3' untranslated regions of eukaryotic mRNAs , 2000, Nucleic Acids Res..

[52]  Bin Ma,et al.  A General Edit Distance between RNA Structures , 2002, J. Comput. Biol..

[53]  Bruce A. Shapiro,et al.  An algorithm for comparing multiple RNA secondary structures , 1988, Comput. Appl. Biosci..

[54]  Laurie J. Heyer,et al.  Finding the most significant common sequence and structure motifs in a set of RNA sequences. , 1997, Nucleic acids research.

[55]  J. Wilusz,et al.  Bringing the role of mRNA decay in the control of gene expression into focus. , 2004, Trends in genetics : TIG.

[56]  Michael S. Waterman,et al.  Linear Trees and RNA Secondary Structure , 1994, Discret. Appl. Math..

[57]  Ian Holmes,et al.  Pairwise RNA Structure Comparison with Stochastic Context-Free Grammars , 2001, Pacific Symposium on Biocomputing.

[58]  Sean R. Eddy,et al.  RSEARCH: Finding homologs of single structured RNA sequences , 2003, BMC Bioinformatics.

[59]  G. Stormo,et al.  Discovering common stem-loop motifs in unaligned RNA sequences. , 2001, Nucleic acids research.

[60]  D. Turner,et al.  Improved predictions of secondary structures for RNA. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Daniel S. Hirschberg,et al.  A linear space algorithm for computing maximal common subsequences , 1975, Commun. ACM.

[62]  S. Eddy,et al.  Computational identification of noncoding RNAs in E. coli by comparative genomics , 2001, Current Biology.

[63]  G. Ruvkun,et al.  A uniform system for microRNA annotation. , 2003, RNA.

[64]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[65]  D. Sankoff Simultaneous Solution of the RNA Folding, Alignment and Protosequence Problems , 1985 .

[66]  M. Zuker On finding all suboptimal foldings of an RNA molecule. , 1989, Science.

[67]  Gary D. Stormo,et al.  A Phylogenetic Approach to RNA Structure Prediction , 1999, ISMB.

[68]  Bin Ma,et al.  Edit distance between two RNA structures , 2001, RECOMB.

[69]  Kaizhong Zhang,et al.  A new algorithm for computing similarity between RNA structures , 2001, Inf. Sci..

[70]  S. B. Needleman,et al.  A general method applicable to the search for similarities in the amino acid sequence of two proteins. , 1970, Journal of molecular biology.