Two-Color Single Hybrid Plasmonic Nanoemitters with Real Time Switchable Dominant Emission Wavelength.

We demonstrate two-color nanoemitters that enable the selection of the dominant emitting wavelength by varying the polarization of excitation light. The nanoemitters were fabricated via surface plasmon-triggered two-photon polymerization. By using two polymerizable solutions with different quantum dots, emitters of different colors can be positioned selectively in different orientations in the close vicinity of the metal nanoparticles. The dominant emission wavelength of the metal/polymer anisotropic hybrid nanoemitter thus can be selected by altering the incident polarization.

[1]  A. Dereux,et al.  SNOM signal near plasmonic nanostructures: an analogy with fluorescence decays channels , 2008, Journal of microscopy.

[2]  D. Reinhoudt,et al.  Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. , 2002, Physical review letters.

[3]  Pierre-Michel Adam,et al.  Selective Functionalization of the Nanogap of a Plasmonic Dimer , 2015 .

[4]  A. Maître,et al.  Polarimetry-based analysis of dipolar transitions of single colloidal CdSe/CdS dot-in-rods , 2014, 1401.1030.

[5]  V. V. Stankevich,et al.  Plasmonic Enhancement of Molecular Fluorescence near Silver Nanoparticles: Theory, Modeling, and Experiment , 2012 .

[6]  Fei Le,et al.  Nanorice: a hybrid plasmonic nanostructure. , 2006, Nano letters.

[7]  Bernhard Lamprecht,et al.  Optical properties of two interacting gold nanoparticles , 2003 .

[8]  Xiaohua Huang,et al.  Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications , 2009, Advanced materials.

[9]  A Vial,et al.  Spectral degeneracy breaking of the plasmon resonance of single metal nanoparticles by nanoscale near-field photopolymerization. , 2007, Physical review letters.

[10]  G. Bryant,et al.  Exciton-plasmon interactions in quantum dot-gold nanoparticle structures. , 2012, Nano letters.

[11]  George C. Schatz,et al.  Spatial confinement of electromagnetic hot and cold spots in gold nanocubes. , 2012, ACS nano.

[12]  V. Shalaev,et al.  Demonstration of a spaser-based nanolaser , 2009, Nature.

[13]  O. Martin,et al.  Fluorescence resonant energy transfer in the optical near field , 2003 .

[14]  Zongfu Yu,et al.  Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna , 2009 .

[15]  T. Araki,et al.  Plasmon-induced Purcell effect in InN/In metal-semiconductor nanocomposites , 2010 .

[16]  Giorgio Volpe,et al.  Multipolar radiation of quantum emitters with nanowire optical antennas , 2013, Nature Communications.

[17]  Robert A. Shick,et al.  Photoinitiation systems and thermal decomposition of photodefinable sacrificial materials , 2003 .

[18]  Fabrice Charra,et al.  Selective excitation of individual plasmonic hotspots at the tips of single gold nanostars. , 2011, Nano letters.

[19]  M. Gather,et al.  Advances in small lasers , 2014, Nature Photonics.

[20]  Jianfang Wang,et al.  Experimental evidence of plasmophores: plasmon-directed polarized emission from gold nanorod-fluorophore hybrid nanostructures. , 2011, Nano letters.

[21]  F. Stellacci,et al.  Erythrocyte incubation as a method for free-dye presence determination in fluorescently labeled nanoparticles. , 2013, Molecular pharmaceutics.

[22]  Naomi J Halas,et al.  Fluorescence enhancement by Au nanostructures: nanoshells and nanorods. , 2009, ACS nano.

[23]  Jochen Feldmann,et al.  Label-free biosensing based on single gold nanostars as plasmonic transducers. , 2010, ACS nano.

[24]  Harald Ditlbacher,et al.  Imaging nanowire plasmon modes with two-photon polymerization , 2015 .

[25]  George C Schatz,et al.  Real-time tunable lasing from plasmonic nanocavity arrays , 2015, Nature Communications.

[26]  Xuehua Wang,et al.  Enhance energy transfer between quantum dots by the surface plasmon of Ag island film , 2014 .

[27]  David R. Smith,et al.  Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas , 2014, Nature Photonics.

[28]  H. Misawa,et al.  Nanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation source. , 2008, Journal of the American Chemical Society.

[29]  C. Girard,et al.  Near-field properties of plasmonic nanostructures with high aspect ratio , 2014 .

[30]  Tian Ming,et al.  Plasmon-Controlled Förster Resonance Energy Transfer , 2012 .

[31]  Jérôme Wenger,et al.  Plasmonic band structure controls single-molecule fluorescence. , 2013, ACS nano.

[32]  Vahid Sandoghdar,et al.  Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. , 2006, Physical review letters.

[33]  Albert Libchaber,et al.  Single-molecule measurements of gold-quenched quantum dots. , 2004, Physical review letters.

[34]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits: Coldren/Diode Lasers 2E , 2012 .

[35]  Prashant K. Jain,et al.  Plasmonic coupling in noble metal nanostructures , 2010 .

[36]  R Atkinson,et al.  Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime. , 2008, Optics express.

[37]  T. Klar,et al.  Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators. , 2008, Physical review letters.

[38]  Giorgio Volpe,et al.  Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna , 2010, Science.

[39]  Tian Ming,et al.  Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods. , 2009, Nano letters.

[40]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[41]  Guangyuan Li,et al.  A room temperature low-threshold ultraviolet plasmonic nanolaser , 2014, Nature Communications.

[42]  P. Nordlander,et al.  Multipolar plasmon resonances in individual ag nanorice. , 2010, ACS nano.

[43]  J. R. Zurita-Sánchez,et al.  A revisitation of the Förster energy transfer near a metallic spherical nanoparticle: (1) Efficiency enhancement or reduction? (2) The control of the Förster radius of the unbounded medium. (3) The impact of the local density of states. , 2013, The Journal of chemical physics.

[44]  Glenn P. Goodrich,et al.  Plasmonic enhancement of molecular fluorescence. , 2007, Nano letters.

[45]  Q. Gong,et al.  Plasmonic-enhanced molecular fluorescence within isolated bowtie nano-apertures. , 2012, ACS nano.

[46]  Koji Fujita,et al.  Wavelength-tunable Spasing in the Visible , 2022 .

[47]  Stephen K. Gray,et al.  Mapping the Electromagnetic Near-Field Enhancements of Gold Nanocubes , 2012 .

[48]  Alexandre Bouhelier,et al.  Plasmon-based free-radical photopolymerization: effect of diffusion on nanolithography processes. , 2011, Journal of the American Chemical Society.

[49]  A. Maître,et al.  Measurement of Three-Dimensional Dipole Orientation of a Single Fluorescent Nanoemitter by Emission Polarization Analysis , 2014 .

[50]  L. Eng,et al.  Near-field coupling of a single fluorescent molecule and a spherical gold nanoparticle. , 2007, Optics express.

[51]  R. Bachelot,et al.  Quantitative analysis of localized surface plasmons based on molecular probing. , 2010, ACS nano.

[52]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[53]  O. Muskens,et al.  Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas. , 2007, Nano letters.

[54]  K. Char,et al.  Multicolored light-emitting diodes based on all-quantum-dot multilayer films using layer-by-layer assembly method. , 2010, Nano letters.

[55]  Ankur Gupta,et al.  Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods. , 2014, ACS nano.