Random Projections for Low Multilinear Rank Tensors
暂无分享,去创建一个
[1] Berkant Savas,et al. Quasi-Newton Methods on Grassmannians and Multilinear Approximations of Tensors , 2009, SIAM J. Sci. Comput..
[2] Daniel Kressner,et al. Low-Rank Tensor Krylov Subspace Methods for Parametrized Linear Systems , 2011, SIAM J. Matrix Anal. Appl..
[3] Vin de Silva,et al. Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.
[4] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[5] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[6] Nathan Halko,et al. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..
[7] Christos Boutsidis,et al. An improved approximation algorithm for the column subset selection problem , 2008, SODA.
[8] Petros Drineas,et al. Tensor-CUR Decompositions for Tensor-Based Data , 2008, SIAM J. Matrix Anal. Appl..
[9] Tamara G. Kolda,et al. Orthogonal Tensor Decompositions , 2000, SIAM J. Matrix Anal. Appl..
[10] Christopher J. Hillar,et al. Most Tensor Problems Are NP-Hard , 2009, JACM.
[11] S. Geman. A Limit Theorem for the Norm of Random Matrices , 1980 .
[12] Na Li,et al. Solving Multilinear Systems via Tensor Inversion , 2013, SIAM J. Matrix Anal. Appl..
[13] O. Alter,et al. A Higher-Order Generalized Singular Value Decomposition for Comparison of Global mRNA Expression from Multiple Organisms , 2011, PloS one.
[14] P. Regalia. Monotonically convergent algorithms for symmetric tensor approximation , 2013 .
[15] C. Eckart,et al. The approximation of one matrix by another of lower rank , 1936 .
[16] Sarang C. Joshi,et al. Detection of Crossing White Matter Fibers with High-Order Tensors and Rank-k Decompositions , 2011, IPMI.
[17] Nadia Kreimer,et al. A tensor higher-order singular value decomposition for prestack seismic data noise reduction and interpolation , 2012 .
[18] Na Li,et al. Source apportionment of time- and size-resolved ambient particulate matter , 2013 .
[19] L. Tucker,et al. Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.
[20] J. W. Silverstein. The Smallest Eigenvalue of a Large Dimensional Wishart Matrix , 1985 .
[21] Hans-Peter Seidel,et al. Estimating Crossing Fibers: A Tensor Decomposition Approach , 2008, IEEE Transactions on Visualization and Computer Graphics.
[22] Gene H. Golub,et al. Matrix computations , 1983 .
[23] Pierre Comon,et al. Handbook of Blind Source Separation: Independent Component Analysis and Applications , 2010 .
[24] M. Stephanov,et al. Random Matrices , 2005, hep-ph/0509286.
[25] Chun Chen,et al. Hierarchical Tensor Approximation of Multi-Dimensional Visual Data , 2008, IEEE Transactions on Visualization and Computer Graphics.
[26] Joos Vandewalle,et al. On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..