Eco-friendly fabrication of PBDTTPD:PC71BM solar cells reaching a PCE of 3.8% using water-based nanoparticle dispersions

The authors acknowledge financial support by Hasselt University (BOF), the Research Foundation Flanders (FWO) (project G.0415.14N), and IAP 7/05 project FS2 (Functional Supramolecular systems), granted by the Science Policy Office of the Belgian Federal Government (BELSPO).

[1]  Jean M. J. Fréchet,et al.  Controlling Solution‐Phase Polymer Aggregation with Molecular Weight and Solvent Additives to Optimize Polymer‐Fullerene Bulk Heterojunction Solar Cells , 2014 .

[2]  Ian A. Howard,et al.  Interplay Between Side Chain Pattern, Polymer Aggregation, and Charge Carrier Dynamics in PBDTTPD:PCBM Bulk‐Heterojunction Solar Cells , 2015 .

[3]  Thomas Kietzke,et al.  A Nanoparticle Approach To Control the Phase Separation in Polyfluorene Photovoltaic Devices , 2004 .

[4]  Jean Manca,et al.  Continuous Flow Polymer Synthesis toward Reproducible Large-Scale Production for Efficient Bulk Heterojunction Organic Solar Cells. , 2015, ChemSusChem.

[5]  Yulia Galagan,et al.  Organic Photovoltaics: Technologies and Manufacturing , 2012 .

[6]  Gabriele Bianchi,et al.  “All That Glisters Is Not Gold”: An Analysis of the Synthetic Complexity of Efficient Polymer Donors for Polymer Solar Cells , 2015 .

[7]  Xiaojing Zhou,et al.  Solar Paint: From Synthesis to Printing , 2014 .

[8]  Mark Van der Auweraer,et al.  Tuning of PCDTBT:PC71BM blend nanoparticles for eco-friendly processing of polymer solar cells , 2017 .

[9]  Long Ye,et al.  Green‐Solvent‐Processed All‐Polymer Solar Cells Containing a Perylene Diimide‐Based Acceptor with an Efficiency over 6.5% , 2016 .

[10]  Long Ye,et al.  Green-solvent-processable organic solar cells , 2016 .

[11]  Xiong Gong,et al.  Low bandgap semiconducting polymers for polymeric photovoltaics. , 2016, Chemical Society reviews.

[12]  Mats Andersson,et al.  Nano-pathways: Bridging the divide between water-processable nanoparticulate and bulk heterojunction organic photovoltaics , 2016 .

[13]  Alexander Colsmann,et al.  Eco‐Friendly Fabrication of 4% Efficient Organic Solar Cells from Surfactant‐Free P3HT:ICBA Nanoparticle Dispersions , 2014, Advanced materials.

[14]  J. Fréchet,et al.  Linear side chains in benzo[1,2-b:4,5-b']dithiophene-thieno[3,4-c]pyrrole-4,6-dione polymers direct self-assembly and solar cell performance. , 2013, Journal of the American Chemical Society.

[15]  H. Ade,et al.  Efficient organic solar cells processed from hydrocarbon solvents , 2016, Nature Energy.

[16]  Marlus Koehler,et al.  Charge transport model for photovoltaic devices based on printed polymer: Fullerene nanoparticles , 2015 .

[17]  Ye Tao,et al.  A thieno[3,4-c]pyrrole-4,6-dione-based copolymer for efficient solar cells. , 2010, Journal of the American Chemical Society.

[18]  Katherine A Mazzio,et al.  The future of organic photovoltaics. , 2015, Chemical Society reviews.

[19]  Alexander Colsmann,et al.  Highly efficient polymer solar cells cast from non-halogenated xylene/anisaldehyde solution , 2015 .