Nonlinear Optical Properties of Porphyrins

Porphyrins and phthalocyanines have outstanding chemical and thermal stability. The macrocyclic structure and chemical reactivity of tetrapyrroles offers architectural flexibility and facilitates the tailoring of chemical, physical and optoelectronic parameters. The specific optical properties of the tetrapyrrole macrocycle combined with the synthetic methodologies now available and the already available theoretical and spectroscopic knowledge on their optical behavior make porphyrins a target of choice for this area. They are versatile organic nanomaterials with a rich photochemistry and their excited state properties are easily modulated through conformational design, molecular symmetry, metal complexation, orientation and strength of the molecular dipole moment, size and degree of conjugation of the π-systems, and appropriate donor-acceptor substituents. Here we review the structural chemistry and optical properties of recently synthesized porphyrin derivatives that offer potential for nonlinear optical (NLO) applications and complement existing studies on phthalocyanines. Classes of interest include the classic A4 symmetric tetrapyrroles, while optimized systems include push-pull porphyrins, oligomeric and supramolecular self-assembled systems, films and nanoparticle systems, and highly conjugated porphyrin arrays.

[1]  D. Bucknall,et al.  Amplified optical nonlinearity in a self-assembled double-strand conjugated porphyrin polymer ladder. , 2002, Journal of the American Chemical Society.

[2]  Y. Kobuke,et al.  Porphyrin−Carbon Nanotube Composites Formed by Noncovalent Polymer Wrapping , 2005 .

[3]  P. Ray,et al.  Very large infrared two-photon absorption cross section of asymmetric zinc porphyrin aggregates: Role of intermolecular interaction and donor-acceptor strengths. , 2006, The journal of physical chemistry. A.

[4]  M. Prato,et al.  Donor-acceptor nanoensembles of soluble carbon nanotubes. , 2004, Chemical communications.

[5]  T. K. Chandrashekar,et al.  Nonplanar porphyrins and their biological relevance: ground and excited state dynamics , 1995 .

[6]  P. Radhakrishnan,et al.  Spectral dependence of third order nonlinear optical susceptibility of zinc phthalocyanine , 2006 .

[7]  William R. Dichtel,et al.  Singlet oxygen generation via two-photon excited FRET. , 2004, Journal of the American Chemical Society.

[8]  A. Hirsch,et al.  A green fullerene: synthesis and electrochemistry of a Diels–Alder adduct of [60]fullerene with a phthalocyanine , 1995 .

[9]  Xiaojun Wang,et al.  Optical limiting and upconverted luminescence in metalloporphyrin-doped sol-gels , 1998 .

[10]  Gema de la Torre,et al.  Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds. , 2004, Chemical reviews.

[11]  Dongho Kim,et al.  Enlarged pi-electronic network of a meso-meso, beta-beta, beta-beta triply linked dibenzoporphyrin dimer that exhibits a large two-photon absorption cross section. , 2005, Chemical communications.

[12]  M. Hanack,et al.  Phthalocyanines as Active Materials for Optical Limiting , 2001 .

[13]  K. Ogawa,et al.  Water-soluble self-assembled butadiyne-bridged bisporphyrin: a potential two-photon-absorbing photosensitizer for photodynamic therapy. , 2007, Chemistry.

[14]  Xueru Zhang,et al.  Fabrication and nonlinear optical properties of an ultrathin film with acceptor–donor periodically overlapping structure , 2006 .

[15]  M. Teich,et al.  Fundamentals of Photonics , 1991 .

[16]  Y. Umezawa,et al.  Expanded porphyrin incorporated solvent polymeric membrane electrodes : Protonation and interaction with an analyte anion at organic/water interface as studied by optical second harmonic generation and Fourier transform infrared attenuated total reflectance spectrometry , 2001 .

[17]  Eric G. Nickel,et al.  Efficient singlet oxygen generation upon two-photon excitation of new porphyrin with enhanced nonlinear absorption , 2001 .

[18]  Jerzy Leszczynski,et al.  Nonlinear optical properties of highly conjugated push-pull porphyrin aggregates : Role of intermolecular interaction , 2006 .

[19]  R. Vijaya,et al.  Dendritic porphyrins: synthesis and third-order optical non-linearity , 2000 .

[20]  G. Cui,et al.  Third-order nonlinear optical properties of an ultrathin film containing a porphyrin derivative. , 2005, Journal of Physical Chemistry B.

[21]  G. Baldwin,et al.  An Introduction to Nonlinear Optics , 1969 .

[22]  T. Torres,et al.  The phthalocyanine approach to second harmonic generation , 1997 .

[23]  S. Quici,et al.  A multitechnique investigation of the second order NLO response of a 10,20-diphenylporphyrinato nickel(II) complex carrying a phenylethynyl based push-pull system in the 5- and 15-positions , 2004 .

[24]  Kevin M. Smith,et al.  Rational approach to the synthesis of meso–meso (5,5′)linked bis-porphyrins , 1997 .

[25]  H. Anderson Meso-alkynyl porphyrins , 1992 .

[27]  W. Blau,et al.  Mesogenic Zinc(u) complexes of 5,10,15,20‐ tetraarylethynyl‐substituted porphyrins , 1997 .

[28]  A. Osuka,et al.  Doubly meso‐β‐Linked Diporphyrins from Oxidation of 5,10,15‐Triaryl‐Substituted NiII– and PdII – Porphyrins , 2000 .

[29]  Hari Singh Nalwa,et al.  Organic Materials for Third‐Order Nonlinear Optics , 1993 .

[30]  Donal D. C. Bradley,et al.  Synthesis and Third‐Order Nonlinear Optical Properties of a Conjugated Porphyrin Polymer , 1994 .

[31]  C. B. de Araújo,et al.  Changes in porphyrin nonlinear absorption owing to interaction with bovine serum albumin. , 2000, Applied optics.

[32]  Sergei A Vinogradov,et al.  Phosphorescent oxygen sensor with dendritic protection and two-photon absorbing antenna. , 2005, Journal of the American Chemical Society.

[33]  Ya‐Ping Sun,et al.  Superior optical limiting performance of simple metalloporphyrin derivatives , 2005 .

[34]  Zhenan Bao,et al.  LARGE PHOTOREFRACTIVITY IN AN EXCEPTIONALLY THERMOSTABLE MULTIFUNCTIONAL POLYIMIDE , 1994 .

[35]  V. Lynch,et al.  Rubyrin: A New Hexapyrrolic Expanded Porphyrin , 1991 .

[36]  Wenfang Sun,et al.  Third-order susceptibilities of asymmetric pentaazadentate porphyrin-like metal complexes , 1999 .

[37]  Kimihisa Yamamoto,et al.  Metal assembly in novel dendrimers with porphyrin cores. , 2003, Journal of the American Chemical Society.

[38]  Dongho Kim,et al.  Helicity induction and two-photon absorbance enhancement in zinc(II) meso-meso linked porphyrin oligomers via intermolecular hydrogen bonding interactions. , 2005, Journal of the American Chemical Society.

[39]  Tapanendu Kundu,et al.  Effects of metal substitution on third-order optical non-linearity of porphyrin macrocycle , 1999 .

[40]  K. M. N. D. Silva,et al.  Push–pull porphyrins as non-linear optical materials: ab initio quantum chemical calculations , 2003 .

[41]  A. Osuka,et al.  Syntheses, structural characterizations, and optical and electrochemical properties of directly fused diporphyrins. , 2001, Journal of the American Chemical Society.

[42]  Sérgio Carlos Zílio,et al.  Reverse saturable absorption in 5,10,15,20-Tetra(4-pyridyl)-21H,23H-porphyrin with ruthenium outlying complexes , 2006 .

[43]  David J. Hagan,et al.  Direct measurements of nonlinear absorption and refraction in solutions of phthalocyanines , 1992 .

[44]  K. Ogawa,et al.  Strong two-photon absorption of self-assembled butadiyne-linked bisporphyrin , 2003 .

[45]  Martin R. Johnson,et al.  Synthesis and characterization of a new 26π-aromatic thiophene-containing macrocyclic ligand , 1992 .

[46]  O. Ito,et al.  Axially modified gallium phthalocyanines and naphthalocyanines for optical limiting. , 2005, Chemical Society reviews.

[47]  Jonathan L. Sessler,et al.  Texaphyrins: Synthesis and Applications , 1994 .

[48]  K. Divakar Rao,et al.  Z-scan studies on porphyrin derivative , 1997 .

[49]  D. N. Rao Excited state dynamics in porphyrins in relevance to third-order nonlinearity and optical limiting , 2003 .

[50]  S. Quici,et al.  Synthesis, electronic characterisation and significant second-order non-linear optical responses of meso-tetraphenylporphyrins and their ZnII complexes carrying a push or pull group in the β pyrrolic position , 2005 .

[51]  Jianguo Tian,et al.  Nonlinear absorption and nonlinear refraction of self-assembled porphyrins. , 2006, The journal of physical chemistry. B.

[52]  P. Feneyrou,et al.  Photoinduced intramolecular charge-transfer systems based on porphyrin–viologen dyads for optical limiting , 1999 .

[53]  S. Bella Second-order nonlinear optical properties of transition metal complexes , 2001 .

[54]  J. Hupp,et al.  Electroabsorption spectroscopy of molecular inorganic compounds , 1998 .

[55]  T. Torres,et al.  Synthetic Advances in Phthalocyanine Chemistry , 2002 .

[56]  P. Gupta,et al.  Nonlinear optical studies in tetraphenyl-porphyrin-doped boric acid glass using picosecond pulses , 2001 .

[57]  Inge Asselberghs,et al.  Unusual frequency dispersion effects of the nonlinear optical response in highly conjugated (polypyridyl)metal-(porphinato)zinc(II) chromophores. , 2002, Journal of the American Chemical Society.

[58]  Vazquez,et al.  Synthesis of novel push-pull unsymmetrically substituted alkynyl phthalocyanines , 2000, The Journal of organic chemistry.

[59]  T. Wen,et al.  Nonlinear Light Absorption in Porphyrin Derivatives Including the Complexes of the IIIa Metal Group , 2002 .

[60]  Xin Zhou,et al.  Theoretical studies of the spectra and two-photon absorption cross sections for porphyrin and carbaporphyrins , 2003 .

[61]  M. Drobizhev,et al.  Frequency-domain gratings by simultaneous absorption of two photons , 2002 .

[62]  W. Blau,et al.  Nonlinear absorption properties of some 1,4,8,11,15,18,22,25-octaalkylphthalocyanines and their metallated derivatives , 2003 .

[63]  Joseph Zyss,et al.  Nonlinear optical properties of organic molecules and crystals , 1987 .

[64]  R. E. Araujo,et al.  Z‐scan studies and quantum chemical calculations ­of meso‐tetrakis(p‐sulfonatophenyl)porphyrin and ­meso‐tetrakis(4‐N‐methyl‐pyridiniumyl)porphyrin and their Fe(III) and Mn(III) complexes , 2001 .

[65]  Kevin M. Smith,et al.  Vilsmeier reactions of porphyrins and chlorins with 3-(dimethylamino)acrolein to give meso-(2-formylvinyl)porphyrins: new syntheses of benzochlorins, benzoisobacteriochlorins, and benzobacteriochlorins and reductive coupling of porphyrins and chlorins using low-valent titanium complexes , 1991 .

[66]  Kamjou Mansour,et al.  Organic Optical Limiter with a Strong Nonlinear Absorptive Response , 1996, Science.

[67]  A. Osuka,et al.  meso-Alkyl-substituted meso-meso linked diporphyrins and meso-alkyl-substituted meso-meso, beta-beta, beta-beta triply linked diporphyrins. , 2005, The Journal of organic chemistry.

[68]  K. Misawa,et al.  Ultrafast exciton and excited-exciton dynamics in J-aggregates of three-level porphyrin molecules , 1999 .

[69]  K. Ogawa,et al.  Two-photon absorption properties of self-assemblies of butadiyne-linked bis(imidazolylporphyrin). , 2005, The journal of physical chemistry. B.

[70]  Kevin M. Smith,et al.  Crystal structure of a remarkably ruffled nonplanar porphyrin (pyridine)[5,10,15,20-tetra(tert-butyl)porphyrinato]zinc(II) , 1995 .

[71]  H. Anderson,et al.  THE NONLINEAR OPTICAL CHARACTERIZATION OF MESO-SUBSTITUTED PORPHYRIN DYES , 2000 .

[72]  C. R. Moylan,et al.  ZIRCONIUM(IV) SANDWICH COMPLEXES OF PORPHYRINS AND TETRAAZAPORPHYRINS : SYNTHESIS, STRUCTURE, AND NONLINEAR OPTICAL PROPERTIES , 1997 .

[73]  H. Ågren,et al.  Effects of conjugation length, electron donor and acceptor strengths on two-photon absorption cross sections of asymmetric zinc-porphyrin derivatives. , 2006, The Journal of chemical physics.

[74]  Q. Gong,et al.  Large and ultrafast third-order optical nonlinearity of heteroleptic triple-decker (phthalocyaninato)(porphyrinato)Sm(III) complexes , 2003 .

[75]  K. Houk,et al.  From Porphyrin Isomers to Octapyrrolic “Figure Eight” Macrocycles , 1995 .

[76]  Ji-Kang Feng,et al.  Comparative studies of the spectra and the second-order nonlinear polarizabilities for donor–acceptor ensembles between Zn-porphyrin/fullerene [60] and Zn-porphyrin/naphthalenediimide , 2003 .

[77]  T. Wen,et al.  Nonlinear absorption of light: two-photon absorption and optical saturation in metalloporphyrin-doped boric acid glass , 2003 .

[78]  David Kleinfeld,et al.  Large two-photon absorptivity of hemoglobin in the infrared range of 780-880 nm. , 2007, The Journal of chemical physics.

[79]  Akihiko Tsuda,et al.  Fully Conjugated Porphyrin Tapes with Electronic Absorption Bands That Reach into Infrared , 2001, Science.

[80]  I. Yamazaki,et al.  Singlet excitation energy transfer in conformationally restricted zinc-free-base hybrid diporphyrins , 1990 .

[81]  J. E. Rogers,et al.  Light-Harvesting Chromophores with Metalated Porphyrin Cores for Tuned Photosensitization of Singlet Oxygen via Two-Photon Excited FRET , 2006 .

[82]  Kevin M. Smith,et al.  Models for the Photosynthetic Reaction Center—Synthesis and Structure of Porphyrin Dimers with cis‐ and trans‐Ethene and Skewed Hydroxymethylene Bridges , 1993 .

[83]  Ji-Kang Feng,et al.  An insight into a novel class of self-assembled porphyrins: geometric structure, electronic structure, one- and two-photon absorption properties. , 2004, Chemistry.

[84]  Dongho Kim,et al.  Porphyrin boxes constructed by homochiral self-sorting assembly: optical separation, exciton coupling, and efficient excitation energy migration. , 2004, Journal of the American Chemical Society.

[85]  W. Blau,et al.  Picosecond optical phase conjugation using conjugated organic molecules , 1988 .

[86]  Qiming Zhang,et al.  Intrinsic dielectric properties and charge transport in oligomers of organic semiconductor copper phthalocyanine , 2005 .

[87]  J. Bhawalkar,et al.  Two-photon photodynamic therapy. , 1997, Journal of clinical laser medicine & surgery.

[88]  Xiang Zhang,et al.  A comparative study of one- and two-photon absorption properties of meso–meso singly, meso-β doubly and meso–meso β–β β–β triply linked ZnII-porphyrin oligomers , 2007 .

[89]  T. K. Chandrashekar,et al.  Core-modified expanded porphyrins: new generation organic materials. , 2003, Accounts of chemical research.

[90]  Pengfei Wu,et al.  All-optical spatial filtering with power limiting materials. , 2006, Optics express.

[91]  S. Mishra,et al.  Nonlinear absorption and optical limiting IN metalloporphyrins , 1998 .

[92]  R. Bozio,et al.  Strong enhancement of the two-photon absorption of tetrakis(4-sulfonatophenyl)porphyrin diacid in water upon aggregation. , 2005, The journal of physical chemistry. B.

[93]  J. Sancho‐García,et al.  Synthesis, DFT calculations, linear and nonlinear optical properties of binuclear phthalocyanine gallium chloride , 2006, Journal of molecular modeling.

[94]  M. Senge,et al.  Regioselective reaction of 5,15-disubstituted porphyrins with organolithium reagents—synthetic access to 5,10,15-trisubstituted porphyrins and directly meso-meso-linked bisporphyrins , 2000 .

[95]  D. N. Rao,et al.  Nonlinear absorption properties of ‘axial-bonding’ type tin(IV) tetratolylporphyrin based hybrid porphyrin arrays , 2005 .

[96]  J. E. Rogers,et al.  Synthesis and near-infrared luminescence of a deuterated conjugated porphyrin dimer for probing the mechanism of non-radiative deactivation. , 2007, Organic & biomolecular chemistry.

[97]  T. Torres,et al.  Synthesis of Novel Unsymmetrically Substituted Push-Pull Phthalocyanines , 1996 .

[98]  Dae Won Cho,et al.  Comparative photophysics of [26]- and [28]hexaphyrins(1.1.1.1.1.1): large two-photon absorption cross section of aromatic [26]hexaphyrins(1.1.1.1.1.1). , 2005, Journal of the American Chemical Society.

[99]  K. Ohta,et al.  Third-Order Nonlinear Optical Susceptibilities of Solutions of Some Mesogenic Metallotetraphenylporphyrins by Nanosecond Degenerate Four-Wave Mixing Method , 1992 .

[100]  H. Ågren,et al.  Optical limiting properties of Zinc- and Platinum-based organometallic compounds , 2004 .

[101]  Joseph Zyss,et al.  Push-Pull Phthalocyanines: A Hammett Correlation between the Cubic Hyperpolarizability and the Donor-Acceptor Character of the Substituents , 1997 .

[102]  J. Si,et al.  Photoinduced electron transfer and dynamic behavior of charge-separated state nonlinear optical process in a self-assembled porphyrin supramolecular system , 1996 .

[103]  N. McKeown,et al.  Inducing solid-state isolation of the phthalocyanine macrocycle by its incorporation within rigid, randomly shaped oligomers , 2005 .

[104]  Dongho Kim,et al.  A quadruply azulene-fused porphyrin with intense near-IR absorption and a large two-photon absorption cross section. , 2006, Angewandte Chemie.

[105]  M. Drobizhev,et al.  Singlet molecular oxygen photosensitization upon two-photon excitation of porphyrin in aqueous solution , 2005 .

[106]  D. Bradley,et al.  Quadratic electro‐optic non‐linearity of a conjugated porphyrin polymer measured in the Q‐band one‐photon resonance region , 1994 .

[107]  Inge Asselberghs,et al.  Design, synthesis, linear, and nonlinear optical properties of conjugated (porphinato)zinc(II)-based donor-acceptor chromophores featuring nitrothiophenyl and nitrooligothiophenyl electron-accepting moieties. , 2005, Journal of the American Chemical Society.

[108]  R. Friend,et al.  Investigation of the linear and nonlinear optical response of edge-linked conjugated zinc porphyrin oligomers by optical spectroscopy and configuration interaction techniques , 1997 .

[109]  Jeanne M. Robinson,et al.  Porphyrin based self-assembled monolayer thin films. Synthesis and characterization , 1993 .

[110]  P. Harvey,et al.  The photophysics and photochemistry of cofacial free base and metallated bisporphyrins held together by covalent architectures , 2007 .

[111]  John Kerr Ll.D. XL. A new relation between electricity and light: Dielectrified media birefringent , 1875 .

[112]  G. V. Ponomarev,et al.  Synthesis and properties of cis - 1,2 - bis (octaethylporphyrinyl)ethylene , 1993 .

[113]  Gong Qi-huang,et al.  Ultrafast third-order optical nonlinearity of several sandwich-type phthalocyaninato and porphyrinato europium complexes , 2005 .

[114]  J. Lindsey,et al.  Investigation of Streamlined Syntheses of Porphyrins Bearing Distinct Meso Substituents , 2006 .

[115]  C. Chiorboli,et al.  Photophysical properties of metal-mediated assemblies of porphyrins , 2006 .

[116]  Y. Matsuzaki,et al.  A theoretical study on the third-order nonlinear optical properties of pi-conjugated linear porphyrin arrays. , 2006, The journal of physical chemistry. A.

[117]  Seth R. Marder,et al.  Materials for Nonlinear Optics Chemical Perspectives , 1991 .

[118]  Seth R Marder,et al.  Organic nonlinear optical materials: where we have been and where we are going. , 2006, Chemical communications.

[119]  Durairaj Baskaran,et al.  Carbon nanotubes with covalently linked porphyrin antennae: photoinduced electron transfer. , 2005, Journal of the American Chemical Society.

[120]  H. Anderson,et al.  CONJUGATED PORPHYRIN OLIGOMERS FROM MONOMER TO HEXAMER , 1998 .

[121]  D. N. Rao,et al.  Heavy atom effect on nonlinear absorption and optical limiting characteristics of 5,10,15,20-(tetratolyl) porphyrinato phosphorus (V) dichloride , 2002 .

[122]  Qiming Zhang,et al.  Fully Functionalized High‐Dielectric‐Constant Nanophase Polymers with High Electromechanical Response , 2005 .

[123]  Hannah Schultz,et al.  Phthalocyaninatometal and related complexes with special electrical and optical properties , 1990 .

[124]  S. C. Zilio,et al.  Singlet excited state absorption of porphyrin molecules for pico- and femtosecond optical limiting application , 2006 .

[125]  K. Ogawa,et al.  Two-photon absorption properties of conjugated supramolecular porphyrins with electron donor and acceptor , 2006 .

[126]  H. Anderson,et al.  Enhanced Electronic Conjugation in Anthracene-Linked Porphyrins. , 1998, Angewandte Chemie.

[127]  E. M. García-Frutos,et al.  Novel Push−Pull Phthalocyanines as Targets for Second-Order Nonlinear Applications , 2003 .

[128]  G. Ponterini,et al.  Large third-order nonlinear optical response of porphyrin J-aggregates oriented in self-assembled thin films{ , 2006 .

[129]  T. K. Chandrashekar,et al.  22pi smaragdyrin molecular conjugates with aromatic phenylacetylenes and ferrocenes: Syntheses, electrochemical, and photonic properties. , 2006, Journal of the American Chemical Society.

[130]  Jian-qing Wang,et al.  Unified Understanding of Giant Magnetoresistance Effect and Magnetization in Granular Films with Two-Particle Size Distribution , 2004 .

[131]  A. K. Sood,et al.  Optical limiting in single-walled carbon nanotube suspensions , 2000 .

[132]  Bipin Bihari,et al.  Nonlinear Optical Properties of a New Porphyrin-Containing Polymer , 1995 .

[133]  Dynamic saturable optical nonlinearities in free base tetrapyridylporphyrin , 2003 .

[134]  T. Torres,et al.  Phthalocyanines: The Need for Selective Synthetic Approaches , 2000 .

[135]  W. Ng,et al.  Strong optical limiting capability of a triosmium cluster bonded indium porphyrin complex [(TPP)InOs3(μ-H)2(CO)9(μ-η2-C5H4N)] , 2003 .

[136]  Tomás Torres,et al.  Phthalocyanines and related compounds:organic targets for nonlinear optical applications , 1998 .

[137]  K. Susumu,et al.  Ultrafast singlet excited-state polarization in electronically asymmetric ethyne-bridged bis[(porphinato)zinc(II)] complexes. , 2003, Journal of the American Chemical Society.

[138]  S. Quici,et al.  The effect on E-stilbazoles second order NLO response by axial interaction with M(II) 5,10,15,20-tetraphenyl porphyrinates (M = Zn, Ru, Os); a new crystalline packing with very large holes , 2006 .

[139]  T. Nagamura Femtosecond Molecular Photonics Materials , 1999 .

[140]  C. Collier,et al.  Noncovalent functionalization of single-walled carbon nanotubes with water-soluble porphyrins. , 2005, The journal of physical chemistry. B.

[141]  N. Matsuzawa,et al.  Macrocyclic functional dyes: Applications to optical disk media, photochemical hole burning and non-linear optics , 1996 .

[142]  M. Hanack,et al.  Phthalocyanines as materials for advanced technologies: some examples , 2004 .

[143]  J. Sessler,et al.  One-electron reduction and oxidation studies of the radiation sensitizer gadolinium(III) texaphyrin (PCI-0120) and other water soluble metallotexaphyrins , 1999 .

[144]  M. Hanack,et al.  Conjugated macrocycles as active materials in nonlinear optical processes: optical limiting effect with phthalocyanines and related compounds. , 2002, Chemical record.

[145]  Hiroto Murakami,et al.  Noncovalent porphyrin-functionalized single-walled carbon nanotubes in solution and the formation of porphyrin-nanotube nanocomposites , 2003 .

[146]  T. K. Chandrashekar,et al.  Core-modified expanded porphyrins with large third-order nonlinear optical response. , 2005, Journal of the American Chemical Society.

[147]  D. N. Rao,et al.  Third-order nonlinearity and optical limiting studies in phosphorus (V) porphyrins with charge transfer states , 2003 .

[148]  Kevin M. Smith,et al.  Synthesis, reactivity and structural chemistry of 5,10,15,20‐tetraalkylporphyrins , 1999 .

[149]  I. Sazanovich,et al.  Comparative Study of the Photophysical Properties of Nonplanar Tetraphenylporphyrin and Octaethylporphyrin Diacids , 2000 .

[150]  A. Adronov,et al.  Noncovalent functionalization and solubilization of carbon nanotubes by using a conjugated Zn-porphyrin polymer. , 2006, Chemistry.

[151]  P. Das,et al.  Metalloporphyrins for Quadratic Nonlinear Optics , 1996 .

[152]  Mark A. Ratner,et al.  Large Molecular Hyperpolarizabilities in “Push−Pull” Porphyrins. Molecular Planarity and Auxiliary Donor−Acceptor Effects , 1998 .

[153]  Christopher M. Lawson,et al.  Excited state lifetime and intersystem crossing rate of asymmetric pentaazadentate porphyrin-like metal complexes , 2004 .

[154]  Yu Chen,et al.  Third order optical nonlinearities of eight -β -octa -octyloxy -phthalocyanines , 2007 .

[155]  Hideaki Kano,et al.  Simultaneous measurement of real and imaginary parts of nonlinear susceptibility for the verification of the Kramers–Kronig relations in femtosecond spectroscopy , 2000 .

[156]  Armen Sevian,et al.  OPTICAL LIMITING IN SHORT CHAIN BASKET HANDLE PORPHYRINS , 1996 .

[157]  A. Osuka,et al.  An Efficient One-Pot Synthetic Procedure of Multiple Porphyrin-Cyclization , 1993 .

[158]  P. Rothemund FORMATION OF PORPHYRINS FROM PYRROLE AND ALDEHYDES , 1935 .

[159]  Can-cheng Guo,et al.  A Facile and Potent Synthesis of meso,meso‐Linked Porphyrin Arrays Using Iodine(III) Reagents , 2005 .

[160]  D. Bradley,et al.  Synthesis and third order nonlinear optics of a new soluble conjugated porphyrin polymer , 2001 .

[161]  J. Sessler,et al.  Synthetic expanded porphyrin chemistry. , 2003, Angewandte Chemie.

[162]  A. Osuka,et al.  Discrete Conjugated Porphyrin Tapes with an Exceptionally Small Bandgap , 2002 .

[163]  Colin Eaborn,et al.  Comprehensive Coordination Chemistry , 1988 .

[164]  Harry L. Anderson,et al.  Degenerate four-wave mixing studies of butadiyne-linked conjugated porphyrin oligomers , 1999 .

[165]  D. Arnold,et al.  The preparation of novel porphyrins and bis(porphyrins) using palladium catalysed coupling reactions , 1993 .

[166]  Michael Hanack,et al.  Phthalocyanines and Phthalocyanine Analogues: The Quest for Applicable Optical Properties , 2001 .

[167]  M. P. Kothiyal,et al.  Nonlinear optical properties of a porphyrin derivative incorporated in Nafion polymer , 2005 .

[168]  S. Kuebler,et al.  Large Third-Order Electronic Polarizability of a Conjugated Porphyrin Polymer , 2000 .

[169]  H. Okamoto,et al.  RESONANT THIRD-ORDER OPTICAL NONLINEARITIES OF HIGHLY-SUBSTITUTED PHTHALOCYANINE DERIVATIVES , 2006 .

[170]  E. Baerends,et al.  A Density Functional Study of the Optical Spectra and Nonlinear Optical Properties of Heteroleptic Tetrapyrrole Sandwich Complexes: The Porphyrinato−Porphyrazinato−Zirconium(IV) Complex as a Case Study , 2000 .

[171]  Paweł Sałek,et al.  Density-functional theory of linear and nonlinear time-dependent molecular properties , 2002 .

[172]  S. Guha,et al.  Third-order optical nonlinearities of metallotetrabenzoporphyrins and a platinum poly-yne. , 1992, Optics letters.

[173]  Hugh J. Byrne,et al.  Reverse saturable absorption in tetraphenylporphyrins , 1985 .

[174]  François Hache,et al.  Optical limiting properties of singlewall carbon nanotubes , 2000 .

[175]  H. Watarai,et al.  Formation of helical J-aggregate of chiral thioether-derivatized phthalocyanine bound by palladium(II) at the toluene/water interface. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[176]  M. Prato,et al.  Novel Photoactive Single‐Walled Carbon Nanotube–Porphyrin Polymer Wraps: Efficient and Long‐Lived Intracomplex Charge Separation , 2005 .

[177]  Paras N. Prasad,et al.  Photosensitization of Singlet Oxygen via Two-Photon-Excited Fluorescence Resonance Energy Transfer in a Water-Soluble Dendrimer , 2005 .

[178]  Richard L. Sutherland,et al.  Handbook of Nonlinear Optics , 1996 .

[179]  P. Grenier,et al.  Time-resolved third-order non-linear optical susceptibility of Langmuir-Blodgett films of mixed dimers ZnP(N+C22)4/H2Pc TS4− by femtosecond laser spectroscopy , 1994 .

[180]  André Persoons,et al.  THIRD-ORDER NONLINEAR OPTICAL RESPONSE IN ORGANIC MATERIALS : THEORETICAL AND EXPERIMENTAL ASPECTS , 1994 .

[181]  Tapanendu Kundu,et al.  Non-resonant third-order optical non-linearity of porphyrinderivatives , 1997 .

[182]  W. Blau,et al.  OPTICAL LIMITING PROPERTIES OF A ZINC PORPHYRIN POLYMER AND ITS DIMER AND MONOMER MODEL COMPOUNDS , 1998 .

[183]  Aleksander Rebane,et al.  Dramatic enhancement of intrinsic two-photon absorption in a conjugated porphyrin dimer , 2004 .

[184]  A. Ito,et al.  Effects of interaction with CTAB micelles on photophysical characteristics of meso-tetrakis(sulfonatophenyl) porphyrin , 2006 .

[185]  Ji-Kang Feng,et al.  A comparative study of two-photon properties of zinc(II)-porphyrin, meso–meso singly-linked zinc(II)-diporphyrin and zinc(II) meso,meso-coupled porphyrin dimer via hydrogen bonding interactions , 2006 .

[186]  Kevin M. Smith,et al.  Syntheses and chemistry of porphyrins , 2000 .

[187]  V. M. Phanse,et al.  OPTICS 1167 Optical limiting performances of asymmetric pentaazadentate porphyrin-like cadmium complexes , 1998 .

[188]  Kevin M Smith,et al.  Models for the Photosynthetic Reaction Center: Preparation, Spectroscopy, and Crystal and Molecular Structures of Cofacial Bisporphyrins Linked by cis-1,2- and trans-1,2-Ethene Bridges and of 1,1-Carbinol-Bridged Bisporphyrins , 1994 .

[189]  Joseph T. Hupp,et al.  Electronic Stark Effect Studies of a Porphyrin-Based Push−Pull Chromophore Displaying a Large First Hyperpolarizability: State-Specific Contributions to β , 1998 .

[190]  U. Schilde,et al.  Synthesis of mono- and disubstituted porphyrins: A- and 5,10-A2-type systems. , 2005, Chemistry.

[191]  M. P. Kothiyal,et al.  Low-threshold optical power limiting of cw laser illumination based on nonlinear refraction in zinc tetraphenyl porphyrin , 2006 .

[192]  M. Senge,et al.  SNAr reactions of β-substituted porphyrins and the synthesis of meso substituted tetrabenzoporphyrins , 2004 .

[193]  P. Grenier,et al.  Photophysical, photoelectrical and non-linear optical properties of porphyrin-phthalocyanine assemblies in Langmuir-Blodgett films , 1996 .

[194]  Q. Gong,et al.  Optical limiting property of nanoparticles from a copper phthalocyanine-fullerene dyad , 2005 .

[195]  S. Qian,et al.  Two-photon absorption properties of substituted porphyrins , 2006 .

[196]  C. H. Chen,et al.  Nonlinear light absorption in meso-substituted tetrabenzoporphyrin and tetraarylporphyrin solutions , 2000 .

[197]  H. Anderson Supramolecular orientation of conjugated porphyrin oligomers in stretched polymers , 1994 .

[198]  A. Abbotto,et al.  Enhancement of two-photon absorption cross-section and singlet-oxygen generation in porphyrins upon beta-functionalization with donor-acceptor substituents. , 2006, Organic letters.

[199]  Liang Zhao-xi,et al.  Ultrafast Energy Transfer and Enhanced Two-Photon Absorption in a Novel Porphyrin Side-Chain Polymer , 2004 .

[200]  Dongho Kim,et al.  Photophysical Properties of Directly Linked Linear Porphyrin Arrays , 2003 .

[201]  J. Shirk,et al.  Synthesis of a Bisphthalocyanine and Its Nonlinear Optical Properties , 2005 .

[202]  Joseph Zyss,et al.  Third-order nonlinear optical properties of soluble octasubstituted metallophthalocyanines , 1994 .

[203]  Dongho Kim,et al.  Large two-photon absorption (TPA) cross-section of directly linked fused diporphyrins. , 2005, The journal of physical chemistry. A.

[204]  Dongho Kim,et al.  Photophysical properties of porphyrin tapes. , 2002, Journal of the American Chemical Society.

[205]  T. Goodson,et al.  Entangled photon absorption in an organic porphyrin dendrimer. , 2006, The journal of physical chemistry. B.

[206]  Kevin M. Smith,et al.  Sterically Strained Porphyrins—Influence of Core Protonation and Peripheral Substitution on the Conformation of Tetra‐meso‐, Octa‐β‐, and Dodeca‐Substituted Porphyrin Dications , 1995 .

[207]  A. Adler,et al.  A simplified synthesis for meso-tetraphenylporphine , 1967 .

[208]  J. Lindsey,et al.  One-flask synthesis of meso-substituted dipyrromethanes and their application in the synthesis of trans-substituted porphyrin building blocks , 1994 .

[209]  H. Ågren,et al.  Charge-transfer Zn-porphyrin derivatives with very large two-photon absorption cross sections at 1.3-1.5 microm fundamental wavelengths. , 2005, The Journal of chemical physics.

[210]  Q. Gong,et al.  Third-order optical nonlinearities of new two-dimensional pi -conjugated metal-coordinated complexes , 1994 .

[211]  Werner J. Blau,et al.  Third-order optical non-linearity in Zn(II) complexes of 5,10,15,20-tetraarylethynyl-substituted porphyrins , 1997 .

[212]  K. Ogawa,et al.  Construction and photophysical properties of self-assembled linear porphyrin arrays , 2006 .

[213]  S. Quici,et al.  A critical evaluation of EFISH and THG non-linear optical responses of asymmetrically substituted meso-tetraphenyl porphyrins and their metal complexes , 2002 .

[214]  Mario Bertolotti,et al.  Optical limiting behavior of zinc phthalocyanines in polymeric matrix , 2007 .

[215]  Ya‐Ping Sun,et al.  Single‐Walled Carbon Nanotubes Tethered with Porphyrins: Synthesis and Photophysical Properties , 2004 .

[216]  M. Senge,et al.  Structure and Conformation of Tetra-meso-, Octa-β-, and Dodecasubstituted 22,24-Dihydroporphyrins (Porphyrin Dications) , 1999 .

[217]  Sergei A Vinogradov,et al.  Synthesis and luminescence of soluble meso-unsubstituted tetrabenzo- and tetranaphtho[2,3]porphyrins. , 2005, The Journal of organic chemistry.

[218]  Aleksander Rebane,et al.  Drastic enhancement of two-photon absorption in porphyrins associated with symmetrical electron-accepting substitution , 2002 .

[219]  C. B. de Araújo,et al.  Enhanced optical limiting performance of a nonlinear absorber in a solution containing scattering nanoparticles. , 2002, Optics letters.

[220]  Jianguo Tian,et al.  Covalently porphyrin-functionalized single-walled carbon nanotubes: a novel photoactive and optical limiting donor–acceptor nanohybrid , 2006 .

[221]  An ab initio CI study of electronic spectra of substituted free-base porphyrins , 2000 .

[222]  K. Yoshihara,et al.  Large third-order optical nonlinearity of self-assembled porphyrin oligomers. , 2002, Journal of the American Chemical Society.

[223]  M. Senge,et al.  Synthesis of directly meso-meso linked bisporphyrins using organolithium reagents , 1999 .

[224]  T. Torres,et al.  Synthesis and third‐harmonic generation in thin films of tetrapyridinoporphyrazines: effect of molecular aggregation , 1999 .

[225]  S. Yamada,et al.  A Porphyrin-Anchored Ultrathin Poly(vinylchloride) Film: Asymmetric Surface Property as Revealed by Interactions with 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone , 1995 .

[226]  F. Diederich,et al.  Exceptional redox and photophysical properties of a triply fused diporphyrin-C60 conjugate: novel scaffolds for multicharge storage in molecular scale electronics. , 2003, Angewandte Chemie.

[227]  T. Bunning,et al.  Electrostatic self-assembly of sulfonated C60-porphyrin complexes on chitosan thin films , 2000 .

[228]  Dongho Kim,et al.  Nonlinear optical properties and excited-state dynamics of highly symmetric expanded porphyrins. , 2006, Journal of the American Chemical Society.

[229]  D. Arnold,et al.  Porphyrin Dimers Linked by Conjugated Butadiynes , 1992 .

[230]  G. Kumar,et al.  Third order optical nonlinearity in basket handle porphyrins - picosecond four-wave mixing and excited state dynamics , 1997 .

[231]  H. Anderson Building molecular wires from the colours of life: conjugated porphyrin oligomers , 1999 .

[232]  D. Beratan,et al.  Acetylenyl-Linked, Porphyrin-Bridged, Donor−Acceptor Molecules: A Theoretical Analysis of the Molecular First Hyperpolarizability in Highly Conjugated Push−Pull Chromophore Structures , 1996 .

[233]  M. Senge,et al.  Synthetic access to 5,10-disubstituted porphyrins , 2003 .

[234]  K. Lai,et al.  Synthesis and nonlinear optical absorption of novel porphyrin-osmium-cluster complexes. , 2003, Chemistry.

[235]  I. Yamazaki,et al.  Geometry dependence of intramolecular photoinduced electron transfer in synthetic zinc-ferric hybrid diporphyrins , 1990 .

[236]  K. D. Silva Meso–β doubly linked and meso–meso, β–β, β–β triply linked oligoporphyrin molecular tapes as potential non linear optical (NLO) materials: quantum chemical calculations , 2005 .

[237]  A. Osuka,et al.  Completely Fused Diporphyrins and Triporphyrin , 2000 .

[238]  J. Borrell,et al.  Two-photon absorption in tetraphenylporphycenes: are porphycenes better candidates than porphyrins for providing optimal optical properties for two-photon photodynamic therapy? , 2007, Journal of the American Chemical Society.

[239]  Zhiyu Wang,et al.  Hybrid silica gel glasses with femtosecond optical kerr effect based on phthalocyanine , 2006 .

[240]  D. Bucknall,et al.  Two methods for amplifying the optical nonlinearity of a conjugated porphyrin polymer: transmetallation and self-assemblyBasis of a presentation given at Materials Discussion No. 6, 12?14th September 2003, Durham, UK. , 2003 .

[241]  Dongho Kim,et al.  Excited-State Energy Transfer and Ground-State Hole/Electron Hopping in p-Phenylene-Linked Porphyrin Dimers , 1998 .

[242]  W. Blau,et al.  Soluble axially substituted phthalocyanines: Synthesis and nonlinear optical response , 2006 .

[243]  J. Leszczynski,et al.  Effect of central metal ions on first hyperpolarizability of unsymmetrical metal porphyrins , 2006 .

[244]  M. Therien,et al.  Push−Pull Arylethynyl Porphyrins: New Chromophores That Exhibit Large Molecular First-Order Hyperpolarizabilities , 1996 .

[245]  R. P. Linstead,et al.  212. Phthalocyanines. Part I. A new type of synthetic colouring matters , 1934 .

[246]  Koen Clays,et al.  Second-order nonlinear optical materials: recent advances in chromophore design , 1997 .

[247]  J. E. Rogers,et al.  Synthesis and crystal structure of a push-pull quinoidal porphyrin: a nanoporous framework assembled from cyclic trimer aggregates. , 2005, Chemical communications.

[248]  Daoben Zhu,et al.  Nonlinear optical properties of an ultrathin film containing porphyrin and poly (phenylenevinylene) units , 2006 .

[249]  K. Suslick,et al.  Push-pull Porphyrins as Nonlinear Optical Materials , 1992 .

[250]  Mikkel Jørgensen,et al.  Two-photon photosensitized production of singlet oxygen in water. , 2005, Journal of the American Chemical Society.

[251]  M. Senge,et al.  Mechanistic studies on the nucleophilic reaction of porphyrins with organolithium reagents. , 2001, The Journal of organic chemistry.

[252]  Wenfang Sun,et al.  Higher-order triplet interaction in energy-level modeling of excited-state absorption for an expanded porphyrin cadmium complex , 2005 .

[253]  Mark J. Pouy,et al.  Nonlinear Optical Spectroscopic Studies of Energy Transfer in Phospholipid Bilayer Liposomes Embedded with Porphyrin Sensitizers , 2004 .

[254]  Ya‐Ping Sun,et al.  Selective interactions of porphyrins with semiconducting single-walled carbon nanotubes. , 2004, Journal of the American Chemical Society.

[255]  R. Vijaya,et al.  Third-order optical nonlinearity of chlorin derivatives , 2001 .

[256]  H. Sasabe,et al.  Optical Second-Harmonic Generation from Langmuir-Blodgett Films of an Asymmetrically Substituted Phthalocyanine , 1995 .

[257]  M. Senge,et al.  5,10,15,20-Tetrakis(diphenylmethyl)porphyrin - A Nonplanar Porphyrin with Intermediate Degree of Ruffling , 1999 .

[258]  Spectral and nonlinear optical properties of chlorophyll b depends on distortion of two-dimensional electron configuration along one axis , 2004 .

[259]  Ivan V. Tomov,et al.  Picosecond Kinetics and Reverse Saturable Absorption of Meso-Substituted Tetrabenzoporphyrins , 1996 .

[260]  H. Girault,et al.  Surface Second Harmonic Generation of Cationic Water-Soluble Porphyrins at the Polarized Water / 1,2-Dichloroethane Interface , 2002 .

[261]  James J. Doyle,et al.  A2B2-type push-pull porphyrins as reverse saturable and saturable absorbers. , 2007, Chemical communications.

[262]  Edward T. Knobbe,et al.  Nonlinear effects in chromophore doped sol-gel photonic materials , 1997 .

[263]  T. K. Chandrashekar,et al.  Modified push-pull expanded corroles: Syntheses, structure and nonlinear optical properties , 2005 .

[264]  J. Sessler,et al.  Sapphyrins: versatile anion binding agents. , 2001, Accounts of chemical research.

[265]  Michael Hanack,et al.  Molecular Engineering of Peripherally And Axially Modified Phthalocyanines for Optical Limiting and Nonlinear Optics , 2003 .

[266]  X. You,et al.  Theoretical Study on Metalloporphyrins with Large Second-order Hyperpolarizabilities , 1999 .

[267]  N. Kobayashi,et al.  Synthesis, structure, and properties of new phthalocyanines , 2004 .

[268]  D. R. Reddy,et al.  Enhanced optical limiting and nonlinear absorption properties of azoarene-appended phosphorus (V) tetratolylporphyrins. , 2002, Applied optics.

[269]  M. Senge Exercises in molecular gymnastics--bending, stretching and twisting porphyrins. , 2006, Chemical communications.

[270]  S. Quici,et al.  Electronic Characterisation and Significant Second‐Order NLO Response of 10,20‐Diphenylporphyrins and Their ZnII Complexes Substituted in the meso Position with π‐Delocalised Linkers Carrying Push or Pull Groups , 2006 .

[271]  M. Senge,et al.  The reaction of porphyrins with organolithium reagents. , 2000, Chemistry.

[272]  D. Bloor,et al.  Organic Materials for Nonlinear Optics , 1997 .

[273]  Xunjin Zhu,et al.  Synthesis of New Monoporphyrinato Lanthanide Complexes for Potential Use in Optical Limiting , 2006 .

[274]  J. Lindsey,et al.  Rothemund and Adler-Longo reactions revisited: synthesis of tetraphenylporphyrins under equilibrium conditions , 1987 .

[275]  Xingzhong Yan,et al.  Up-converted emission in a series of phenylazomethine dendrimers with a porphyrin core. , 2005, The journal of physical chemistry. B.

[276]  A. Burrell,et al.  Aldehyde‐Appended Tetraphenylporphyrin: A New Building Block for Porphyrin Arrays , 1995 .

[277]  Alain Brun,et al.  Reverse saturable absorption in palladium and zinc tetraphenyltetrabenzoporphyrin doped xerogels , 1997 .

[278]  M. Drobizhev,et al.  Resonance enhancement of two-photon absorption in porphyrins , 2002, QELS 2002.

[279]  N. Aratani,et al.  Metal-dependent regioselective oxidative coupling of 5,10,15-triarylporphyrins with DDQ-Sc(OTf)3 and formation of an oxo-quinoidal porphyrin. , 2003, Organic letters.

[280]  Michael Hanack,et al.  Porphyrins and phthalocyanines as materials for optical limiting , 2004 .

[281]  N. Bloembergen Nonlinear Optics (4th Edition) , 1996 .

[282]  D. Kuciauskas,et al.  Charge-transfer states determine iron porphyrin film third-order nonlinear optical properties in the near-IR spectral region , 2004 .

[283]  M. Drobizhev,et al.  Two-photon absorption of tetraphenylporphin free base , 2003 .

[284]  Ji-Kang Feng,et al.  Two-photon absorption properties of porphyrin derivatives , 2004 .

[285]  Lionel R. Milgrom,et al.  The Colours of Life: An Introduction to the Chemistry of Porphyrins and Related Compounds , 1997 .

[286]  D. S. King,et al.  The two-photon induced fluorescence of the tumor localizing photosensitizer hematoporphyrin derivative via 1064 nm photons from a 20 ns Q-switched Nd-YAG laser. , 1985, Biochemical and biophysical research communications.

[287]  E. W. Stryland,et al.  High-sensitivity, single-beam n(2) measurements. , 1989, Optics letters.

[288]  C. Ercolani Diphthalocyanine metal complexes and their analogues , 2000 .

[289]  M. Takeuchi,et al.  Mono-, Di-, and Trimetallic Palladium(II) Porphyrin Trimers with Etheno-bridges , 1996 .

[290]  S. Yamada,et al.  Second-order nonlinear optical properties of amphiphilic porphyrins in Langmuir-Blodgett monolayer assemblies , 1995 .

[291]  Yuriy Stepanenko,et al.  Extremely strong near-IR two-photon absorption in conjugated porphyrin dimers: quantitative description with three-essential-states model. , 2005, The journal of physical chemistry. B.

[292]  H. Anderson Conjugated Porphyrin Ladders , 1994 .

[293]  Roger Guilard,et al.  The porphyrin handbook , 2002 .

[294]  P. Rothemund A New Porphyrin Synthesis. The Synthesis of Porphin1 , 1936 .

[295]  J. E. Rogers,et al.  Synthesis, crystal structure, and nonlinear optical behavior of beta-unsubstituted meso-meso E-vinylene-linked porphyrin dimers. , 2005, Organic letters.

[296]  Bhanu Pratap Singh,et al.  Resonant Nonlinear Optical Studies on Porphyrin Derivatives , 1997 .

[297]  Jason E. Riggs,et al.  Optical limiting properties of suspended and solubilized carbon nanotubes , 2000 .

[298]  N. Sergeeva,et al.  Metamorphosis of tetrapyrrole macrocycles. , 2006, Angewandte Chemie.

[299]  N. Aratani,et al.  Directly linked porphyrin arrays. , 2003, Chemical record.

[300]  M. Senge,et al.  Synthetic transformations of porphyrins – Advances 2002-2004 , 2004 .

[301]  D. N. Rao,et al.  Contribution of two-photon and excited state absorption in axial-bonding type hybrid porphyrin arrays under resonant electronic excitation , 2006 .

[302]  José Rivera,et al.  Phthalocyanine−Azacrown−Fullerene Multicomponent System: Synthesis, Photoinduced Processes, and Electrochemistry# , 1999 .

[303]  David J. Williams,et al.  Introduction to Nonlinear Optical Effects in Molecules and Polymers , 1991 .

[304]  Anderson S. L. Gomes,et al.  Investigation of picosecond optical nonlinearity in porphyrin metal complexes derivatives , 2000 .

[305]  James S. Shirk,et al.  Third-order optical nonlinearities of bis-phthalocyanines , 1992 .

[306]  S. Fukuzumi,et al.  Ordered assembly of protonated porphyrin driven by single-wall carbon nanotubes. J- and H-aggregates to nanorods. , 2005, Journal of the American Chemical Society.

[307]  K. McEwan,et al.  Synthesis, Characterization, and Nonlinear Optical Study of Metalloporphyrins , 2003 .

[308]  M J Therien,et al.  Highly conjugated, acetylenyl bridged porphyrins: new models for light-harvesting antenna systems. , 1994, Science.

[309]  E. M. García-Frutos,et al.  Synthesis, Characterisation and Nonlinear Optical Properties of Two‐Dimensional Octupolar Systems Based on Phthalocyanine Compounds , 2005 .

[310]  E. M. García-Frutos,et al.  Alkynyl substituted phthalocyanine derivatives as targets for optical limiting , 2003 .

[311]  Toshikuni Kaino,et al.  Organic materials for nonlinear optics , 1993 .

[312]  D. Rao,et al.  Third‐order, nonlinear optical interactions of some benzporphyrins , 1991 .

[313]  Martina Huber,et al.  Model Reactions for Photosynthesis—Photoinduced Charge and Energy Transfer between Covalently Linked Porphyrin and Quinone Units , 1995 .

[314]  R. T. Phillips,et al.  Femtosecond transient photoinduced transmission measurements on a novel conjugated zinc porphyrin system , 1996 .

[315]  M. Senge Nucleophilic substitution as a tool for the synthesis of unsymmetrical porphyrins. , 2005, Accounts of chemical research.

[316]  H. Anderson,et al.  Meso‐Tetra‐Alkynyl Porphyrins for Optical Limiting—A Survey of Group III and IV Metal Complexes , 2001 .

[317]  Yundong Zhang,et al.  The one-photon and two-photon absorption properties for porphyrin-derived monomers and dimers. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[318]  M. Senge,et al.  The meso–β-linkage as structural motif in porphyrin-based donor–acceptor compounds , 2004 .

[319]  Thomas M. Cooper,et al.  Investigation of reverse-saturable absorption in brominated porphyrins , 1998 .

[320]  Dongho Kim,et al.  Relationship between two-photon absorption and the pi-conjugation pathway in porphyrin arrays through dihedral angle control. , 2006, Journal of the American Chemical Society.

[321]  H. Watarai,et al.  Non-linear optical activity of porphyrin aggregate at the liquid/liquid interface , 2004 .

[322]  Eric G. Nickel,et al.  Strong two-photon absorption in new asymmetrically substituted porphyrins: interference between charge-transfer and intermediate-resonance pathways. , 2006, The journal of physical chemistry. B.

[323]  M. Senge New trends in photobiology: The conformational flexibility of tetrapyrroles — current model studies and photobiological relevance , 1992 .

[324]  Yuriy Stepanenko,et al.  Strong cooperative enhancement of two-photon absorption in double-strand conjugated porphyrin ladder arrays. , 2006, Journal of the American Chemical Society.

[325]  Bhaskar G. Maiya,et al.  Studies of third-order optical nonlinearity and nonlinear absorption in tetra tolyl porphyrins using degenerate four wave mixing and Z-scan , 2000 .

[326]  Eric M. Breitung,et al.  Facile Synthesis and Nonlinear Optical Properties of Push-Pull 5,15-Diphenylporphyrins. , 1998, The Journal of organic chemistry.

[327]  A. Osuka,et al.  THE THIRD-ORDER NONLINEAR OPTICAL PROPERTIES OF PORPHYRIN OLIGOMERS , 1997 .

[328]  Dongho Kim,et al.  Comparative photophysical properties of free-base, bis-Zn(II), bis-Cu(II), and bis-Co(II) doubly N-confused hexaphyrins(1.1.1.1.1.1). , 2006, The journal of physical chemistry. B.

[329]  Stephen R. Forrest,et al.  Strong exciton–photon coupling in organic materials , 2007 .

[330]  Chi Wu,et al.  Synthesis, Characterization, and Degradation of Silicon(IV) Phthalocyanines Conjugated Axially with Poly(sebacic anhydride) , 2005 .

[331]  D. Guldi,et al.  Synthesis and photophysical investigation of new porphyrin derivatives with beta-pyrrole ethynyl linkage and corresponding dyad with [60] fullerene. , 2006, The journal of physical chemistry. A.

[332]  S. Ogura,et al.  Water-soluble bis(imidazolylporphyrin) self-assemblies with large two-photon absorption cross sections as potential agents for photodynamic therapy. , 2006, Journal of medicinal chemistry.

[333]  E. Blart,et al.  Synthesis of new crosslinkable co-polymers containing a push-pull zinc porphyrin for non-linear optical applications , 2005 .

[334]  K. Ogawa,et al.  Substituent effect on two-photon absorption properties of conjugated porphyrins , 2005 .

[335]  The Role of the Electronic Structure of the Porphyrin as Viewed by EPR/ENDOR Methods in the Efficiency of Biomimetic Model Compounds for Photosynthesis , 2001 .