Metalloenzyme Active-Site Structure and Function through Multifrequency CW and Pulsed ENDOR

[1]  C. Stout,et al.  Crystal structures of aconitase with isocitrate and nitroisocitrate bound. , 1993, Biochemistry.

[2]  D C Rees,et al.  Structural models for the metal centers in the nitrogenase molybdenum-iron protein. , 1992, Science.

[3]  B. Hoffman,et al.  Quantitative studies of davies pulsed ENDOR , 1992 .

[4]  J. W. Whittaker,et al.  Electron Paramagnetic Resonance and Electron Nuclear Double Resonance Spectroscopies of the Radical Site in Galactose Oxidase and of Thioether-Substituted Phenol Model Compounds , 1992 .

[5]  R. Dyer,et al.  Reaction of cyanide with cytochrome ba3 from Thermus thermophilus: spectroscopic characterization of the Fe(II)a3-CN.Cu(II)B-CN complex suggests four 14N atoms are coordinated to CuB. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[6]  B. Oh,et al.  14,15N, 13C, 57Fe, and 1,2H Q-band ENDOR study of Fe-S proteins with clusters that have endogenous sulfur ligands. , 1992, Biochemistry.

[7]  F. A. Neugebauer,et al.  The free radical in pyruvate formate-lyase is located on glycine-734. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[8]  B. Hoffman,et al.  2H mims pulsed ENDOR of hydrogen bonds and exogenous ligands to the metal clusters of iron-sulfur proteins , 1992 .

[9]  M. McPherson,et al.  Novel thioether bond revealed by a 1.7 Å crystal structure of galactose oxidase , 1994, Nature.

[10]  F. Daldal,et al.  Q-band ENDOR spectra of the Rieske protein from Rhodobactor capsulatus ubiquinol-cytochrome c oxidoreductase show two histidines coordinated to the [2Fe-2S] cluster. , 1991, Biochemistry.

[11]  A. Schweiger,et al.  PULSED ELECTRON-NUCLEAR DOUBLE RESONANCE METHODOLOGY , 1991 .

[12]  B. Hoffman,et al.  A simple method for hyperfine-selective heteronuclear pulsed ENDOR via proton suppression , 1991 .

[13]  M. Adams,et al.  Pulsed ENDOR and ESEEM spectroscopic evidence for unusual nitrogen coordination to the novel hydrogen-activating iron-sulfur center in hydrogenase , 1991 .

[14]  E. Solomon,et al.  Pulsed ENDOR study of the native and high pH perturbed forms of the blue copper site in stellacyanin , 1991 .

[15]  A. Kreiter,et al.  Simultaneous EPR and ENDOR powder-spectra synthesis by direct hamiltonian diagonalization , 1991 .

[16]  B. Oh,et al.  Crystallization and Structure Determination to 2 . 581 Resolution of the Oxidized [ 2 Fe2 SI Ferredoxin Isolated from Anabaena 7 120 t , 2001 .

[17]  J. Sanders-Loehr,et al.  The environment of Fe4S4 clusters in ferredoxins and high-potential iron proteins. New information from x-ray crystallography and resonance Raman spectroscopy , 1991 .

[18]  J. Kraut,et al.  Compound I radical in site-directed mutants of cytochrome c peroxidase as probed by electron paramagnetic resonance and electron-nuclear double resonance. , 1991, Biochemistry.

[19]  G. Schneider,et al.  Crystal structure of the ternary complex of ribulose-1,5-bisphosphate carboxylase, Mg(II), and activator CO2 at 2.3-A resolution. , 1991, Biochemistry.

[20]  B. Hoffman Electron Nuclear Double Resonance (ENDOR) of Metalloenzymes , 1991 .

[21]  B. Hoffman,et al.  Ligand spin densities in blue copper proteins by q-band proton and nitrogen-14 ENDOR spectroscopy , 1991 .

[22]  B. Hoffman,et al.  Detection and Characterization of Exchangeable Protons Bound to the Hydrogen-Activation Nickel Site of Desulfovibrio gigas Hydrogenase: A 1H and 2H Q-Band ENDOR Study , 1991 .

[23]  J. Lavergne,et al.  Histidine oxidation in the oxygen-evolving photosystem-II enzyme , 1990, Nature.

[24]  J. W. Whittaker,et al.  A tyrosine-derived free radical in apogalactose oxidase. , 1990, The Journal of biological chemistry.

[25]  H. Thomann,et al.  Pulsed electron-nuclear-electron triple resonance spectroscopy , 1990 .

[26]  D. Mustafi,et al.  Structure and conformation of spin-labeled amino acids in frozen solutions determined by electron nuclear double resonance. 1. Methyl N-(2,2,5,5-tetramethyl-1-oxypyrrolinyl-3-carbonyl)-L-alanate, a molecule with a single preferred conformation , 1990 .

[27]  J. Philo,et al.  Kinetic investigations of the quaternary enhancement effect and alpha/beta differences in binding the last oxygen to hemoglobin tetramers and dimers. , 1990, The Journal of biological chemistry.

[28]  J. Pilbrow,et al.  Transition Ion Electron Paramagnetic Resonance , 1990 .

[29]  M. Bowman,et al.  Modern pulsed and continuous-wave electron spin resonance , 1990 .

[30]  C. Stout,et al.  Structure of activated aconitase: formation of the [4Fe-4S] cluster in the crystal. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[31]  H. Beinert,et al.  Engineering of protein bound iron‐sulfur clusters , 1989 .

[32]  H. Beinert,et al.  Mössbauer study of the inactive Fe3S4 and Fe3Se4 and the active Fe4Se4 forms of beef heart aconitase. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[33]  T. K. Chandrashekar,et al.  An ENDOR study of the tyrosyl free radical in ribonucleotide reductase from Escherichia coli , 1989 .

[34]  D B Goodin,et al.  Identification by ENDOR of Trp191 as the free-radical site in cytochrome c peroxidase compound ES. , 1989, Science.

[35]  B. Hoffman,et al.  Electron-nuclear double resonance spectroscopy of 15N-enriched phthalate dioxygenase from Pseudomonas cepacia proves that two histidines are coordinated to the [2Fe-2S] Rieske-type clusters. , 1989, Biochemistry.

[36]  B. Hoffman,et al.  Polycrystalline ENDOR patterns from centers with axial EPR spectra. General formulas and simple analytic expressions for deriving geometric information from dipolar couplings , 1989 .

[37]  D. Sastry,et al.  Ligand endor study of Cu(II)-doped l-histidine deuterochloride monodeuterohydrate single crystals at 4.2 K , 1989 .

[38]  R. R. Ernst,et al.  Hyperfine-selective ENDOR , 1989 .

[39]  B. Hoffman,et al.  CHAPTER 15 – ELECTRON NUCLEAR DOUBLE RESONANCE (ENDOR) OF METALLOENZYMES , 1989 .

[40]  S. Dikanov,et al.  CHAPTER 2 – ESEEM OF DISORDERED SYSTEMS: THEORY AND APPLICATIONS , 1989 .

[41]  W. Mims,et al.  CHAPTER 1 – ESEEM AND LEFE OF METALLOPROTEINS AND MODEL COMPOUNDS* , 1989 .

[42]  A. Gewirth,et al.  CHAPTER 25 – EPR SPECTRA OF ACTIVE SITES IN COPPER PROTEINS , 1989 .

[43]  W. Lubitz,et al.  CHAPTER 13 – LIQUID-STATE ENDOR AND TRIPLE RESONANCE1 , 1989 .

[44]  A. Hoff,et al.  Advanced EPR : applications in biology and biochemistry , 1989 .

[45]  J. Stubbe Protein radical involvement in biological catalysis? , 1989, Annual review of biochemistry.

[46]  C. Stout,et al.  The structure of aconitase , 1989, Proteins.

[47]  L. Que Metal clusters in proteins , 1988 .

[48]  J. Dawson,et al.  Probing structure-function relations in heme-containing oxygenases and peroxidases. , 1988, Science.

[49]  H. Tedeschi,et al.  Advances in Membrane Biochemistry and Bioenergetics , 1988 .

[50]  B. Hoffman,et al.  57Fe Hyperfine Coupling Tensors of the FeMo Cluster in Azotobacter vinelandii MoFe Protein: Determination by Polycrystalline ENDOR Spectroscopy , 1988 .

[51]  H. Ruf,et al.  Higher oxidation states of prostaglandin H synthase. EPR study of a transient tyrosyl radical in the enzyme during the peroxidase reaction. , 1988, European journal of biochemistry.

[52]  A. Gewirth,et al.  Electronic structure of plastocyanin: excited state spectral features , 1988 .

[53]  R. Debus,et al.  Site-directed mutagenesis identifies a tyrosine radical involved in the photosynthetic oxygen-evolving system. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[54]  B. Hoffman,et al.  Mode of substrate carboxyl binding to the [4Fe-4S]+ cluster of reduced aconitase as studied by 17O and 13C electron-nuclear double resonance spectroscopy. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[55]  D. Singel,et al.  Analysis of 14N ESEEM patterns of randomly oriented solids , 1987 .

[56]  S. Chapman,et al.  On the difference between iron-molybdenum cofactor of wild-type and nifV mutant molybdenum-iron proteins of Klebsiella pneumoniae: ENDOR, EXAFS, and EPR evidence , 1987 .

[57]  J. Kraut,et al.  Yeast cytochrome c peroxidase: mutagenesis and expression in Escherichia coli show tryptophan-51 is not the radical site in compound I. , 1987, Biochemistry.

[58]  H. Gray,et al.  Spectrochemical studies on the blue copper protein azurin from Alcaligenes denitrificans. , 1987, Biochemistry.

[59]  W. Lubitz,et al.  ENDOR Spectroscopy in Photobiology and Biochemistry , 1987 .

[60]  L. Kevan Electron spin echo studies of the location and coordination of metal species on oxide surfaces , 1987 .

[61]  John A. Weil,et al.  Electronic magnetic resonance of the solid state , 1987 .

[62]  B. Hoffman,et al.  57Fe and 1H electron-nuclear double resonance of three doubly reduced states Escherichia coli sulfite reductase. , 1986, Biochemistry.

[63]  E. Baker,et al.  Blue copper proteins. The copper site in azurin from Alcaligenes denitrificans , 1986 .

[64]  B. Hoffman,et al.  17O electron nuclear double resonance characterization of substrate binding to the [4Fe-4S]1+ cluster of reduced active aconitase. , 1986, The Journal of biological chemistry.

[65]  M. Mather,et al.  Respiratory proteins from extremely thermophilic, aerobic bacteria. , 1986, Biochimica et biophysica acta.

[66]  B. Hoffman,et al.  Electron-nuclear double resonance studies of oxidized Escherichia coli sulfite reductase: 1H, 14N, and 57Fe measurements. , 1985, Biochemistry.

[67]  R. Kreilick,et al.  Angle-selected ENDOR spectroscopy. 1. Theoretical interpretation of ENDOR shifts from randomly orientated transition-metal complexes , 1985 .

[68]  G. C. Hurst,et al.  Angle-selected ENDOR spectroscopy. 2. Determination of proton coordinates from a polycrystalline sample of bis(2,4-pentanedionato)copper(II) , 1985 .

[69]  A. Desideri,et al.  Electron nuclear double resonance spectra of the Type 1 copper centre in Japanese lacquer tree (Rhus vernicifera) laccase, and Type 2 copper-depleted laccase , 1985 .

[70]  Edward I. Solomon,et al.  Electronic structure and bonding of the blue copper site in plastocyanin , 1985 .

[71]  H. Beinert,et al.  Mössbauer studies of aconitase. Substrate and inhibitor binding, reaction intermediates, and hyperfine interactions of reduced 3Fe and 4Fe clusters. , 1985, The Journal of biological chemistry.

[72]  B. Hoffman,et al.  General theory of polycrystalline ENDOR patterns: effects of finite EPR and ENDOR component linewidths , 1985 .

[73]  B. Hoffman,et al.  Evidence for N coordination to Fe in the [2Fe-2S] clusters of Thermus Rieske protein and phthalate dioxygenase from Pseudomonas. , 1985, The Journal of biological chemistry.

[74]  James E. Roberts,et al.  Comparative ENDOR study of six blue copper proteins , 1984 .

[75]  B. Hoffman,et al.  General theory of polycrystalline ENDOR patterns. g and hyperfine tensors of arbitrary symmetry and relative orientation , 1984 .

[76]  J. Guss,et al.  Structure of oxidized poplar plastocyanin at 1.6 A resolution. , 1983, Journal of molecular biology.

[77]  G. M. Muha Exact solution of the eigenvalue problem for a spin 32 system in the presence of a magnetic field , 1983 .

[78]  H. Yokoi 14N-ENDOR evidence for imidazole coordination in copper proteins. , 1982, Biochemical and biophysical research communications.

[79]  G. M. Muha The Zeeman effect in spin = 1 systems , 1982 .

[80]  G. Feher,et al.  Electron nuclear double resonance (ENDOR) from heme and histidine nitrogens in single crystals of aquometmyoglobin , 1982 .

[81]  J. Fee,et al.  Electron–nuclear double resonance on copper (II) tetraimidazole , 1981 .

[82]  E. Margoliash,et al.  Electron paramagnetic and electron nuclear double resonance of the hydrogen peroxide compound of cytochrome c peroxidase. , 1981, The Journal of biological chemistry.

[83]  Yeong-Wook Kim,et al.  Distant-proton electron-nuclear double resonance in dilute paramagnetic systems—Case of metmyoglobin , 1981 .

[84]  James E. Roberts,et al.  Oxygen-17 ENDOR of horseradish peroxidase compound I , 1981 .

[85]  B. Hoffman,et al.  14N, 1H, and metal ENDOR of single crystal Ag(II)(TPP) and Cu(II)(TPP) , 1980 .

[86]  E. Margoliash,et al.  Electron-nuclear double resonance of the hydrogen peroxide compound of cytochrome c peroxidase: identification of the free radical site with a methionyl cluster. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[87]  R. Beer,et al.  ESR and ENDOR at 9 and 35 GHz on a powder of the enzyme methanol dehydrogenase from Hyphomicrobium X , 1979 .

[88]  C. Scholes ENDOR on Hemes and Hemoproteins , 1979 .

[89]  R. Sands ENDOR and ELDOR on Iron-Sulfur Proteins , 1979 .

[90]  Lawrence J. Berliner,et al.  Biological Magnetic Resonance , 1982, Biological Magnetic Resonance.

[91]  K. Möbius,et al.  1H, 2H, and 13C distant-ENDOR and DNP studies of the polarization and depolarization mechanisms in partially deuterated succinic acid , 1977 .

[92]  D. Edmonds Nuclear quadrupole double resonance , 1977 .

[93]  A. L. Kwiram,et al.  Powder endor studies at 35 GHz , 1976 .

[94]  L. Kevan,et al.  Electron spin double resonance spectroscopy , 1976 .

[95]  K. Thuomas,et al.  Evaluation of hyperfine and quadrupole tensors from ENDOR measurements on single crystals , 1975 .

[96]  D. Hall,et al.  The iron electron-nuclear double resonance (ENDOR) of 4-Fe clusters in iron-sulfur proteins from Chromatium and Clostridium pasteurianum. , 1975, Biochimica et biophysica acta.

[97]  E. R. Davies,et al.  A new pulse endor technique , 1974 .

[98]  P. Liao,et al.  Determination of Cr-Al Hyperfine and Electric Quadrupole Interaction Parameters in Ruby Using Spin-Echo Electron-Nuclear Double Resonance, , 1973 .

[99]  N. Atherton,et al.  Electron spin resonance : theory and applications , 1973 .

[100]  W. Wenckebach,et al.  Distant endor in diluted copper tutton salts , 1971 .

[101]  J. S. Hyde,et al.  Ligand ENDOR of Metal Complexes in Powders , 1970 .

[102]  A. Abragam,et al.  Electron paramagnetic resonance of transition ions , 1970 .

[103]  J. Peisach,et al.  The electronic structure of protoheme proteins. II. An electron paramagnetic resonance and optical study of cytochrome c peroxidase and its derivatives. , 1968, The Journal of biological chemistry.

[104]  W. Mims Pulsed endor experiments , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[105]  W. Davidon,et al.  Mathematical Methods of Physics , 1965 .

[106]  Roger Coleman,et al.  Isolation and properties of an iron-protein from the (reduced coenzyme Q)-cytochrome C reductase complex of the respiratory chain , 1964 .

[107]  H. Beinert,et al.  Properties of the copper associated with cytochrome oxidase as studied by paramagnetic resonance spectroscopy. , 1962, The Journal of biological chemistry.

[108]  J. Lambe,et al.  Mechanisms of Double Resonance in Solids , 1961 .

[109]  F. Kneubühl Line Shapes of Electron Paramagnetic Resonance Signals Produced by Powders, Glasses, and Viscous Liquids , 1960 .

[110]  G. Feher,et al.  Electron Spin Resonance Experiments on Donors in Silicon. I. Electronic Structure of Donors by the Electron Nuclear Double Resonance Technique , 1959 .