On Coupling of RANS and LES for Integrated Computations of Jet Engines

Large scale integrated computations of jet engines can be performed by using the unsteady RANS framework to compute the flow in turbomachinery components while using the LES framework to compute the flow in the combustor. This requires a proper coupling of the flow variables at the interfaces between the RANS and LES solvers. In this paper, a novel approach to turbulence coupling is proposed. It is based on the observation that in full operating conditions the mean flow at the interfaces is highly non-uniform and local turbulence production dominates convection effects in regions of large velocity gradients. This observation has lead to the concept of using auxilliary ducts to compute turbulence based on the mean velocity at the interface. In the case of the RANS/LES interface, turbulent fluctuations are reconstructed from an LES computation in an auxiliary three-dimensional duct using a recycling technique. For the LES/RANS interface, the turbulence variables for the RANS model are computed from an auxilliary solution of the RANS turbulence model in a quasi-2D duct. We have demonstrated the feasibility of this approach for the integrated flow simulation of a 20° sector of an entire jet engine.Copyright © 2007 by ASME