Parameterized Complexity of Bandwidth on Trees

The bandwidth of a n-vertex graph G is the smallest integer b such that there exists a bijective function f : V(G) → {1,...,n}, called a layout of G, such that for every edge uv ∈ E(G), |f(u) − f(v)| ≤ b. In the Bandwidth problem we are given as input a graph G and integer b, and asked whether the bandwidth of G is at most b. We present two results concerning the parameterized complexity of the Bandwidth problem on trees.

[1]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[2]  B. Monien The bandwidth minimization problem for caterpillars with hair length 3 is NP-complete , 1986 .

[3]  S. Assmann,et al.  The Bandwidth of Caterpillars with Hairs of Length 1 and 2 , 1981 .

[4]  Fillia Makedon,et al.  Bandwidth Minimization: An approximation algorithm for caterpillars , 2005, Mathematical systems theory.

[5]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[6]  Dániel Marx,et al.  Parameterized Complexity and Approximation Algorithms , 2008, Comput. J..

[7]  Uriel Feige,et al.  Hardness results for approximating the bandwidth , 2011, J. Comput. Syst. Sci..

[8]  Michael R. Fellows,et al.  Beyond NP-completeness for problems of bounded width (extended abstract): hardness for the W hierarchy , 1994, STOC '94.

[9]  G. Khosrovshahi,et al.  Computing the bandwidth of interval graphs , 1990 .

[10]  Dimitrios M. Thilikos,et al.  Invitation to fixed-parameter algorithms , 2007, Comput. Sci. Rev..

[11]  Petr A. Golovach,et al.  Bandwidth on AT-Free Graphs , 2009, ISAAC.

[12]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[13]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[14]  Uriel Feige,et al.  Approximating the Bandwidth via Volume Respecting Embeddings , 2000, J. Comput. Syst. Sci..

[15]  Alan George,et al.  Computer Solution of Large Sparse Positive Definite , 1981 .

[16]  Christos H. Papadimitriou,et al.  The NP-Completeness of the bandwidth minimization problem , 1976, Computing.

[17]  Daniel J. Kleitman,et al.  Computing the Bandwidth of Interval Graphs , 1990, SIAM Journal on Discrete Mathematics.

[18]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[19]  Michael R. Fellows,et al.  Fixed-Parameter Tractability and Completeness II: On Completeness for W[1] , 1995, Theor. Comput. Sci..

[20]  M. Fellows,et al.  Beyond NP-completeness for problems of bounded width: hardness for the W hierarchy , 1994, Symposium on the Theory of Computing.

[21]  Paul D. Seymour,et al.  Graphs with small bandwidth and cutwidth , 1989, Discret. Math..

[22]  Uriel Feige,et al.  Approximating the Bandwidth of Caterpillars , 2005, Algorithmica.

[23]  P. Scheffler,et al.  A Linear Algorithm for the Pathwidth of Trees , 1990 .

[24]  Santosh S. Vempala,et al.  On Euclidean Embeddings and Bandwidth Minimization , 2001, RANDOM-APPROX.

[25]  Dieter Kratsch,et al.  Bandwidth of Bipartite Permutation Graphs in Polynomial Time , 2008, LATIN.

[26]  Norman E. Gibbs,et al.  The bandwidth problem for graphs and matrices - a survey , 1982, J. Graph Theory.

[27]  James B. Saxe,et al.  Dynamic-Programming Algorithms for Recognizing Small-Bandwidth Graphs in Polynomial Time , 1980, SIAM J. Algebraic Discret. Methods.

[28]  Anupam Gupta Improved bandwidth approximation for trees , 2000, SODA '00.

[29]  Ge Xia,et al.  Strong computational lower bounds via parameterized complexity , 2006, J. Comput. Syst. Sci..