Parameterized Complexity of Bandwidth on Trees
暂无分享,去创建一个
[1] R. Möhring. Algorithmic graph theory and perfect graphs , 1986 .
[2] B. Monien. The bandwidth minimization problem for caterpillars with hair length 3 is NP-complete , 1986 .
[3] S. Assmann,et al. The Bandwidth of Caterpillars with Hairs of Length 1 and 2 , 1981 .
[4] Fillia Makedon,et al. Bandwidth Minimization: An approximation algorithm for caterpillars , 2005, Mathematical systems theory.
[5] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[6] Dániel Marx,et al. Parameterized Complexity and Approximation Algorithms , 2008, Comput. J..
[7] Uriel Feige,et al. Hardness results for approximating the bandwidth , 2011, J. Comput. Syst. Sci..
[8] Michael R. Fellows,et al. Beyond NP-completeness for problems of bounded width (extended abstract): hardness for the W hierarchy , 1994, STOC '94.
[9] G. Khosrovshahi,et al. Computing the bandwidth of interval graphs , 1990 .
[10] Dimitrios M. Thilikos,et al. Invitation to fixed-parameter algorithms , 2007, Comput. Sci. Rev..
[11] Petr A. Golovach,et al. Bandwidth on AT-Free Graphs , 2009, ISAAC.
[12] Michael R. Fellows,et al. Parameterized Complexity , 1998 .
[13] Jörg Flum,et al. Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.
[14] Uriel Feige,et al. Approximating the Bandwidth via Volume Respecting Embeddings , 2000, J. Comput. Syst. Sci..
[15] Alan George,et al. Computer Solution of Large Sparse Positive Definite , 1981 .
[16] Christos H. Papadimitriou,et al. The NP-Completeness of the bandwidth minimization problem , 1976, Computing.
[17] Daniel J. Kleitman,et al. Computing the Bandwidth of Interval Graphs , 1990, SIAM Journal on Discrete Mathematics.
[18] Russell Impagliazzo,et al. Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).
[19] Michael R. Fellows,et al. Fixed-Parameter Tractability and Completeness II: On Completeness for W[1] , 1995, Theor. Comput. Sci..
[20] M. Fellows,et al. Beyond NP-completeness for problems of bounded width: hardness for the W hierarchy , 1994, Symposium on the Theory of Computing.
[21] Paul D. Seymour,et al. Graphs with small bandwidth and cutwidth , 1989, Discret. Math..
[22] Uriel Feige,et al. Approximating the Bandwidth of Caterpillars , 2005, Algorithmica.
[23] P. Scheffler,et al. A Linear Algorithm for the Pathwidth of Trees , 1990 .
[24] Santosh S. Vempala,et al. On Euclidean Embeddings and Bandwidth Minimization , 2001, RANDOM-APPROX.
[25] Dieter Kratsch,et al. Bandwidth of Bipartite Permutation Graphs in Polynomial Time , 2008, LATIN.
[26] Norman E. Gibbs,et al. The bandwidth problem for graphs and matrices - a survey , 1982, J. Graph Theory.
[27] James B. Saxe,et al. Dynamic-Programming Algorithms for Recognizing Small-Bandwidth Graphs in Polynomial Time , 1980, SIAM J. Algebraic Discret. Methods.
[28] Anupam Gupta. Improved bandwidth approximation for trees , 2000, SODA '00.
[29] Ge Xia,et al. Strong computational lower bounds via parameterized complexity , 2006, J. Comput. Syst. Sci..