Kernel-Based Object Tracking

A new approach toward target representation and localization, the central component in visual tracking of nonrigid objects, is proposed. The feature histogram-based target representations are regularized by spatial masking with an isotropic kernel. The masking induces spatially-smooth similarity functions suitable for gradient-based optimization, hence, the target localization problem can be formulated using the basin of attraction of the local maxima. We employ a metric derived from the Bhattacharyya coefficient as similarity measure, and use the mean shift procedure to perform the optimization. In the presented tracking examples, the new method successfully coped with camera motion, partial occlusions, clutter, and target scale variations. Integration with motion filters and data association techniques is also discussed. We describe only a few of the potential applications: exploitation of background information, Kalman tracking using motion models, and face tracking.

[1]  T. Kailath The Divergence and Bhattacharyya Distance Measures in Signal Selection , 1967 .

[2]  D. Reid An algorithm for tracking multiple targets , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[3]  Y. Bar-Shalom Tracking and data association , 1988 .

[4]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[5]  William H. Press,et al.  Numerical recipes , 1990 .

[6]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[7]  F. D. Garber,et al.  The Quality of Training Sample Estimates of the Bhattacharyya Coefficient , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Kohji Fukunaga,et al.  Introduction to Statistical Pattern Recognition-Second Edition , 1990 .

[9]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[10]  Jianhua Lin,et al.  Divergence measures based on the Shannon entropy , 1991, IEEE Trans. Inf. Theory.

[11]  David W. Scott,et al.  Multivariate Density Estimation: Theory, Practice, and Visualization , 1992, Wiley Series in Probability and Statistics.

[12]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[13]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[14]  Gérard G. Medioni,et al.  Finding Waldo, or focus of attention using local color information , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Rachid Deriche,et al.  Region tracking through image sequences , 1995, Proceedings of IEEE International Conference on Computer Vision.

[16]  Ingemar J. Cox,et al.  An Efficient Implementation of Reid's Multiple Hypothesis Tracking Algorithm and Its Evaluation for the Purpose of Visual Tracking , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Gregory D. Hager,et al.  Real-time tracking of image regions with changes in geometry and illumination , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[18]  Alex Pentland,et al.  Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[20]  James W. Davis,et al.  Real-time closed-world tracking , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[21]  Paul W. Fieguth,et al.  Color-based tracking of heads and other mobile objects at video frame rates , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[22]  H. Damasio,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence: Special Issue on Perceptual Organization in Computer Vision , 1998 .

[23]  Gary R. Bradski,et al.  Real time face and object tracking as a component of a perceptual user interface , 1998, Proceedings Fourth IEEE Workshop on Applications of Computer Vision. WACV'98 (Cat. No.98EX201).

[24]  Stanley T. Birchfield,et al.  Elliptical head tracking using intensity gradients and color histograms , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[25]  Larry S. Davis,et al.  W/sup 4/: Who? When? Where? What? A real time system for detecting and tracking people , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.

[26]  Thomas Kalinke,et al.  Computer vision for driver assistance systems , 1998, Defense, Security, and Sensing.

[27]  Neil A. Thacker,et al.  The Bhattacharyya metric as an absolute similarity measure for frequency coded data , 1998, Kybernetika.

[28]  Stan Sclaroff,et al.  Active blobs , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[29]  Hironobu Fujiyoshi,et al.  Moving target classification and tracking from real-time video , 1998, Proceedings Fourth IEEE Workshop on Applications of Computer Vision. WACV'98 (Cat. No.98EX201).

[30]  Ramin Zabih,et al.  Bayesian multi-camera surveillance , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[31]  James M. Rehg,et al.  A multiple hypothesis approach to figure tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[32]  Joachim M. Buhmann,et al.  Empirical evaluation of dissimilarity measures for color and texture , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[33]  Hans-Hellmut Nagel,et al.  Tracking Persons in Monocular Image Sequences , 1999, Comput. Vis. Image Underst..

[34]  Dariu Gavrila,et al.  The Visual Analysis of Human Movement: A Survey , 1999, Comput. Vis. Image Underst..

[35]  Alan L. Yuille,et al.  Fundamental bounds on edge detection: an information theoretic evaluation of different edge cues , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[36]  Rómer Rosales,et al.  3D trajectory recovery for tracking multiple objects and trajectory guided recognition of actions , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[37]  Shaogang Gong,et al.  Tracking colour objects using adaptive mixture models , 1999, Image Vis. Comput..

[38]  Jake K. Aggarwal,et al.  Human Motion Analysis: A Review , 1999, Comput. Vis. Image Underst..

[39]  Daniel P. Huttenlocher,et al.  Adaptive Bayesian recognition in tracking rigid objects , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[40]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[41]  J. Krumm,et al.  Multi-camera multi-person tracking for EasyLiving , 2000, Proceedings Third IEEE International Workshop on Visual Surveillance.

[42]  Larry S. Davis,et al.  Non-parametric Model for Background Subtraction , 2000, ECCV.

[43]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[44]  Rama Chellappa,et al.  Simultaneous tracking and verification via sequential posterior estimation , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[45]  Nando de Freitas,et al.  The Unscented Particle Filter , 2000, NIPS.

[46]  Nicholas Ayache,et al.  Unifying maximum likelihood approaches in medical image registration , 2000, Int. J. Imaging Syst. Technol..

[47]  Luc Van Gool,et al.  Real-time affine region tracking and coplanar grouping , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[48]  Xosé R. Fernández-Vidal,et al.  Information Theoretic Measure for Visual Target Distinctness , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  J. Sullivan,et al.  Guiding random particles by deterministic search , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[50]  Cristian Sminchisescu,et al.  Covariance scaled sampling for monocular 3D body tracking , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[51]  Dorin Comaniciu,et al.  Design, analysis, and engineering of video monitoring systems: an approach and a case study , 2001, Proc. IEEE.

[52]  A. Yilmaz,et al.  TARGET-TRACKING IN FLIR IMAGERY USING MEAN-SHIFT AND GLOBAL MOTION COMPENSATION , 2001 .

[53]  Myron Flickner,et al.  Detection and tracking of shopping groups in stores , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[54]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[55]  Gregory D. Hager,et al.  Probabilistic Data Association Methods for Tracking Complex Visual Objects , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[56]  Yong Rui,et al.  Better proposal distributions: object tracking using unscented particle filter , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[57]  Ying Wu,et al.  A co-inference approach to robust visual tracking , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[58]  Takeo Kanade,et al.  Algorithms for cooperative multisensor surveillance , 2001, Proc. IEEE.

[59]  Supun Samarasekera,et al.  Aerial video surveillance and exploitation , 2001, Proc. IEEE.

[60]  Thomas S. Huang,et al.  JPDAF based HMM for real-time contour tracking , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[61]  R. Mahler Engineering statistics for multi-object tracking , 2001, Proceedings 2001 IEEE Workshop on Multi-Object Tracking.

[62]  Joachim M. Buhmann,et al.  Empirical Evaluation of Dissimilarity Measures for Color and Texture , 2001, Comput. Vis. Image Underst..

[63]  Hwann-Tzong Chen,et al.  Trust-region methods for real-time tracking , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[64]  Clark F. Olson Image registration by aligning entropies , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[65]  Patrick Pérez,et al.  Sequential Monte Carlo methods for multiple target tracking and data fusion , 2002, IEEE Trans. Signal Process..

[66]  Alessio Del Bue,et al.  Smart cameras with real-time video object generation , 2002, Proceedings. International Conference on Image Processing.

[67]  Kevin Nickels,et al.  Estimating uncertainty in SSD-based feature tracking , 2002, Image Vis. Comput..

[68]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[69]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[70]  L. Van Gool,et al.  Analyzing the layout of composite textures , 2002 .

[71]  William H. Press,et al.  Numerical recipes in C , 2002 .

[72]  Patrick Pérez,et al.  Color-Based Probabilistic Tracking , 2002, ECCV.

[73]  David J. Fleet,et al.  Robust Online Appearance Models for Visual Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[74]  Mubarak Shah,et al.  View-Invariant Representation and Recognition of Actions , 2002, International Journal of Computer Vision.

[75]  David J. Fleet,et al.  Probabilistic Detection and Tracking of Motion Boundaries , 2000, International Journal of Computer Vision.

[76]  Andrew Blake,et al.  A Probabilistic Exclusion Principle for Tracking Multiple Objects , 2004, International Journal of Computer Vision.

[77]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[78]  Shai Avidan,et al.  Support vector tracking , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[79]  Dimitris N. Metaxas,et al.  Optical Flow Constraints on Deformable Models with Applications to Face Tracking , 2000, International Journal of Computer Vision.

[80]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[81]  Jing Huang,et al.  Spatial Color Indexing and Applications , 2004, International Journal of Computer Vision.

[82]  Paul A. Viola,et al.  Alignment by Maximization of Mutual Information , 1997, International Journal of Computer Vision.

[83]  Xia Liu,et al.  Pedestrian detection and tracking with night vision , 2005, IEEE Transactions on Intelligent Transportation Systems.