A coupled level-set and volume-of-fluid method for the buoyant rise of gas bubbles in liquids

This paper investigates some fundamental aspects of rising gas bubbles in stagnant Newtonian liquids using a coupled level-set and volume-of-fluid (CLSVOF) method. The coupled method not only calculates the geometric properties (normal and curvature) of the bubble surface accurately but also satisfies compliance of mass conservation very well. The method solves a single set of governing equations for both phases using variable transportive properties on a fixed Eulerian two-dimensional mesh in axisymmetric coordinates. We computed the terminal shapes and Reynolds numbers (Re) of isolated gas bubbles rising in stagnant liquids for low to high Eotvos number (Eo < 340) and Morton number (M < 44). In addition, the drag co-efficients for a single bubble rising in liquid with M ⩾ 10−4 are computed. The rise and shape of two co-axial gas bubbles with same size in stagnant liquid and the evolution history of the bubble coalescence process are examined. Furthermore, the mechanisms of bubble-bursting at a free surface and formation of liquid jets are also studied qualitatively. The computational results are compared with the experimental results available in literature. It is observed that the predicted results are in good agreement with experimental counterpart. Finally, the formation of gas bubbles from a submerged orifice in quiescent and co-flowing liquids for low Reynolds number flows is discussed where the viscosity ratio of liquid to gas is about 16, 474.

[1]  D. Jacqmin Regular Article: Calculation of Two-Phase Navier–Stokes Flows Using Phase-Field Modeling , 1999 .

[2]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[3]  Nahmkeon Hur,et al.  A COUPLED LEVEL SET AND VOLUME-OF-FLUID METHOD FOR THE BUOYANCY-DRIVEN MOTION OF FLUID PARTICLES , 2002 .

[4]  Peter Smereka,et al.  Axisymmetric free boundary problems , 1997, Journal of Fluid Mechanics.

[5]  Mark Sussman,et al.  A computational study of the effect of initial bubble conditions on the motion of a gas bubble rising in viscous liquids , 2005 .

[6]  D. Juric,et al.  A front-tracking method for the computations of multiphase flow , 2001 .

[7]  Jerzy M. Floryan,et al.  Numerical Methods for Viscous Flows With Moving Boundaries , 1989 .

[8]  Taehun Lee,et al.  Single bubble rising dynamics for moderate Reynolds number using Lattice Boltzmann Method , 2010 .

[9]  John R. Grace,et al.  The viscosity of fluidized beds , 1970 .

[10]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .

[11]  Ranga Narayanan,et al.  Fluid Dynamics at Interfaces , 2010 .

[12]  Arup Kumar Das,et al.  Bubble evolution through submerged orifice using smoothed particle hydrodynamics: Basic formulation and model validation , 2009 .

[13]  F. Durst,et al.  Computational investigation on bubble detachment from submerged orifice in quiescent liquid under normal and reduced gravity , 2009 .

[14]  Ping Lin,et al.  Numerical simulation of 3D bubbles rising in viscous liquids using a front tracking method , 2008, J. Comput. Phys..

[15]  Stéphane Popinet,et al.  An accurate adaptive solver for surface-tension-driven interfacial flows , 2009, J. Comput. Phys..

[16]  W. Rider,et al.  Reconstructing Volume Tracking , 1998 .

[17]  R. Kumar,et al.  The Formation of Bubbles and Drops , 1970 .

[18]  Seungwon Shin,et al.  Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity , 2002 .

[19]  M. Rudman INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 24, 671–691 (1997) VOLUME-TRACKING METHODS FOR INTERFACIAL FLOW CALCULATIONS , 2022 .

[20]  J. Caltagirone,et al.  Simulating compressible gas bubbles with a smooth volume tracking 1-Fluid method , 2010 .

[21]  J. Gordillo,et al.  Transition from bubbling to jetting in a coaxial air–water jet , 2019, 1912.03899.

[22]  Andrea Prosperetti,et al.  Dynamics of bubble growth and detachment from a needle , 1993, Journal of Fluid Mechanics.

[23]  B. J. Daly Numerical Study of Two Fluid Rayleigh‐Taylor Instability , 1967 .

[24]  Bart J. Daly,et al.  A technique for including surface tension effects in hydrodynamic calculations , 1969 .

[25]  S. Osher,et al.  A Level Set Formulation of Eulerian Interface Capturing Methods for Incompressible Fluid Flows , 1996 .

[26]  M. Sussman,et al.  A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows , 2000 .

[27]  Christophe Clanet,et al.  Transition from dripping to jetting , 1999, Journal of Fluid Mechanics.

[28]  R. Clift,et al.  Bubbles, Drops, and Particles , 1978 .

[29]  A. Prosperetti,et al.  Bubble entrainment by the impact of drops on liquid surfaces , 1990, Journal of Fluid Mechanics.

[30]  Ioannis G. Kevrekidis,et al.  Bubble flow simulations with the lattice Boltzmann method , 1999 .

[31]  Martin E. Weber,et al.  Bubbles in viscous liquids: shapes, wakes and velocities , 1981, Journal of Fluid Mechanics.

[32]  David H. Sharp,et al.  Front Tracking Applied to Rayleigh–Taylor Instability , 1986 .

[33]  G. Tryggvason,et al.  A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .

[34]  A. Acrivos,et al.  On the shape of a gas bubble in a viscous extensional flow , 1976, Journal of Fluid Mechanics.

[35]  Matthew W. Williams,et al.  A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework , 2006, J. Comput. Phys..

[36]  Jam Hans Kuipers,et al.  Numerical simulation of behavior of gas bubbles using a 3‐D front‐tracking method , 2006 .

[37]  Suresh V. Garimella,et al.  The development of a bubble rising in a viscous liquid , 1999, Journal of Fluid Mechanics.

[38]  L. G. Leal,et al.  Numerical solution of free-boundary problems in fluid mechanics. Part 1. The finite-difference technique , 1984, Journal of Fluid Mechanics.

[39]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[40]  Jacques Magnaudet,et al.  Transition from spherical cap to toroidal bubbles , 2006 .

[41]  John R. Blake,et al.  Gas bubbles bursting at a free surface , 1993, Journal of Fluid Mechanics.

[42]  S. Welch,et al.  A Volume of Fluid Based Method for Fluid Flows with Phase Change , 2000 .

[43]  Howard A. Stone,et al.  Relaxation and breakup of an initially extended drop in an otherwise quiescent fluid , 1989, Journal of Fluid Mechanics.

[44]  Liang-Shih Fan,et al.  Direct simulation of the buoyant rise of bubbles in infinite liquid using level set method , 2008 .

[45]  C. Pozrikidis,et al.  The flow of a liquid film along a periodic wall , 1988, Journal of Fluid Mechanics.

[46]  Balasubramaniam Ramaswamy,et al.  Numerical simulation of unsteady viscous free surface flow , 1990 .

[47]  E. Puckett,et al.  A High-Order Projection Method for Tracking Fluid Interfaces in Variable Density Incompressible Flows , 1997 .

[48]  D. Eckmann,et al.  Numerical study of wall effects on buoyant gas-bubble rise in a liquid-filled finite cylinder. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Xavier Frank,et al.  Bubbles in a viscous liquid: lattice Boltzmann simulation and experimental validation , 2005, Journal of Fluid Mechanics.

[50]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[51]  Stéphane Popinet,et al.  A front-tracking algorithm for accurate representation of surface tension , 1999 .

[52]  A. Vogelpohl,et al.  Bubble formation in quiescent liquids under constant flow conditions , 1986 .

[53]  J. G. Hnat,et al.  Spherical cap bubbles and skirt formation , 1976 .

[54]  Martin E. Weber,et al.  In-line interaction of a pair of bubbles in a viscous liquid , 1980 .

[55]  S. C. Chuang,et al.  Bubble Formation Due to a Submerged Capillary Tube in Quiescent and Coflowing Streams , 1970 .

[56]  Gihun Son,et al.  EFFICIENT IMPLEMENTATION OF A COUPLED LEVEL-SET AND VOLUME-OF-FLUID METHOD FOR THREE-DIMENSIONAL INCOMPRESSIBLE TWO-PHASE FLOWS , 2003 .

[57]  Gautam Biswas,et al.  Bubble generation in quiescent and co-flowing liquids , 2011 .

[58]  M. Renardy,et al.  PROST: a parabolic reconstruction of surface tension for the volume-of-fluid method , 2002 .

[59]  Jinsong Hua,et al.  Numerical simulation of bubble rising in viscous liquid , 2007, J. Comput. Phys..

[60]  Jacques Magnaudet,et al.  An interface-capturing method for incompressible two-phase flows. Validation and application to bubble dynamics , 2007 .

[61]  Bryan R. Kerman,et al.  The release of air bubbles from an underwater nozzle , 1991 .

[62]  J. Gordillo,et al.  Generation of micron-sized drops and bubbles through viscous coflows , 2009 .

[63]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[64]  L. G. Leal,et al.  Numerical solution of free-boundary problems in fluid mechanics. Part 2. Buoyancy-driven motion of a gas bubble through a quiescent liquid , 1984, Journal of Fluid Mechanics.

[65]  Stéphane Zaleski,et al.  Jet Formation in Bubbles Bursting at a Free Surface , 2002 .

[66]  F. Durst,et al.  Comparison of volume-of-fluid methods for surface tension-dominant two-phase flows , 2006 .

[67]  In Seok Kang,et al.  Numerical solution of axisymmetric, unsteady free‐boundary problems at finite Reynolds number. I. Finite‐difference scheme and its application to the deformation of a bubble in a uniaxial straining flow , 1987 .

[68]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[69]  S. Cummins,et al.  Estimating curvature from volume fractions , 2005 .

[70]  Mohammad Jamialahmadi,et al.  Study of Bubble Formation Under Constant Flow Conditions , 2001 .

[71]  Samuel W. J. Welch,et al.  Planar Simulation of Bubble Growth in Film Boiling in Near-Critical Water Using a Variant of the VOF Method , 2004 .

[72]  Ng Niels Deen,et al.  Numerical simulation of gas bubbles behaviour using a three-dimensional volume of fluid method , 2005 .

[73]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .