An Overview of Molecular Modeling for Drug Discovery with Specific Illustrative Examples of Applications

In this paper we review the current status of high-performance computing applications in the general area of drug discovery. We provide an introduction to the methodologies applied at atomic and molecular scales, followed by three specific examples of implementation of these tools. The first example describes in silico modeling of the adsorption of small molecules to organic and inorganic surfaces, which may be applied to drug delivery issues. The second example involves DNA translocation through nanopores with major significance to DNA sequencing efforts. The final example offers an overview of computer-aided drug design, with some illustrative examples of its usefulness.

[1]  Lu Zhang,et al.  From machine learning to deep learning: progress in machine intelligence for rational drug discovery. , 2017, Drug discovery today.

[2]  M. Parrinello,et al.  Ab initio molecular dynamics-based assignment of the protonation state of pepstatin A/HIV-1 protease cleavage site. , 2001, Journal of the American Chemical Society.

[3]  A. Bronowska,et al.  Thermodynamics of Ligand-Protein Interactions: Implications for Molecular Design , 2011 .

[4]  L. Verlet,et al.  Computer "Experiments" on Classical Fluids. III. Time-Dependent Self-Correlation Functions , 1970 .

[5]  Meni Wanunu,et al.  Chemically modified solid-state nanopores. , 2007, Nano letters.

[6]  R. Blessing,et al.  The first protein crystal structure determined from high-resolution X-ray powder diffraction data: a variant of T3R3 human insulin-zinc complex produced by grinding. , 2000, Acta crystallographica. Section D, Biological crystallography.

[7]  William L Jorgensen,et al.  Optimization of diarylamines as non-nucleoside inhibitors of HIV-1 reverse transcriptase. , 2006, Bioorganic & medicinal chemistry letters.

[8]  Joseph A. Bank,et al.  Supporting Online Material Materials and Methods Figs. S1 to S10 Table S1 References Movies S1 to S3 Atomic-level Characterization of the Structural Dynamics of Proteins , 2022 .

[9]  Jiajun Gu,et al.  PROBING SINGLE DNA MOLECULE TRANSPORT USING FABRICATED NANOPORES. , 2004, Nano letters.

[10]  Aleksei Aksimentiev,et al.  Assessing graphene nanopores for sequencing DNA. , 2012, Nano letters.

[11]  C. Montemagno,et al.  Biomining of MoS2 with Peptide-based Smart Biomaterials , 2018, Scientific Reports.

[12]  G. M. Alder,et al.  Staphylococcus aureus alpha-toxin-induced pores: Channel-like behavior in lipid bilayers and patch clamped cells , 2004, The Journal of Membrane Biology.

[13]  A. Aksimentiev,et al.  Molecular dynamics study of MspA arginine mutants predicts slow DNA translocations and ion current blockades indicative of DNA sequence. , 2012, ACS nano.

[14]  Ryan G. Coleman,et al.  ZINC: A Free Tool to Discover Chemistry for Biology , 2012, J. Chem. Inf. Model..

[15]  T. Straatsma,et al.  Free energy of ionic hydration: Analysis of a thermodynamic integration technique to evaluate free energy differences by molecular dynamics simulations , 1988 .

[16]  Mark J. Biggs,et al.  Molecular-level understanding of protein adsorption at the interface between water and a strongly interacting uncharged solid surface. , 2014, Journal of the American Chemical Society.

[17]  M. W. van der Kamp,et al.  Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology. , 2013, Biochemistry.

[18]  Albert C. Pan,et al.  Molecular determinants of drug-receptor binding kinetics. , 2013, Drug discovery today.

[19]  M. Parrinello,et al.  An Excited State Density Functional Theory Study of the Rhodopsin Chromophore , 1999 .

[20]  K. Schulten,et al.  Sizing DNA using a nanometer-diameter pore. , 2004, Biophysical journal.

[21]  Cees Dekker,et al.  Hybrid pore formation by directed insertion of α-haemolysin into solid-state nanopores. , 2010, Nature nanotechnology.

[22]  Yanli Wang,et al.  Structure-Based Virtual Screening for Drug Discovery: a Problem-Centric Review , 2012, The AAPS Journal.

[23]  G. Torrie,et al.  Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling , 1977 .

[24]  P. Willett,et al.  PHARMACOPHORE PERCEPTION , DEVELOPMENT , AND USE IN DRUG DESIGN , 2011 .

[25]  Rashid Bashir,et al.  DNA-Mediated Fluctuations in Ionic Current through Silicon Oxide Nanopore Channels. Nano Lett., 4(8), 1551-1556 , 2004 .

[26]  R. Asahi,et al.  Molecular dynamics simulations with machine learning potential for Nb-doped lithium garnet-type oxide Li7−xLa3(Zr2−xNbx)O12 , 2018, Physical Review Materials.

[27]  Stefan Boresch,et al.  Absolute Binding Free Energies: A Quantitative Approach for Their Calculation , 2003 .

[28]  P A Kollman,et al.  Determination of the relative binding free energies of peptide inhibitors to the HIV-1 protease. , 1991, Journal of medicinal chemistry.

[29]  Tianyang Sun,et al.  Adhesion of lactoferrin and bone morphogenetic protein-2 to a rutile surface: dependence on the surface hydrophobicity. , 2014, Biomaterials science.

[30]  Stefano Corni,et al.  Including image charge effects in the molecular dynamics simulations of molecules on metal surfaces , 2008, J. Comput. Chem..

[31]  M. Levitt A simplified representation of protein conformations for rapid simulation of protein folding. , 1976, Journal of molecular biology.

[32]  A. Reina,et al.  Graphene as a sub-nanometer trans-electrode membrane , 2010, Nature.

[33]  R. Swendsen,et al.  THE weighted histogram analysis method for free‐energy calculations on biomolecules. I. The method , 1992 .

[34]  Tiffany R. Walsh,et al.  Ab initio derived force‐field parameters for molecular dynamics simulations of deprotonated amorphous‐SiO2/water interfaces , 2012 .

[35]  William L Jorgensen,et al.  Computer-aided discovery of anti-HIV agents. , 2016, Bioorganic & medicinal chemistry.

[36]  Leonardo Fernandes Fraceto,et al.  Nano based drug delivery systems: recent developments and future prospects , 2018, Journal of Nanobiotechnology.

[37]  D. McNabb,et al.  Electrical characterization of protein molecules by a solid-state nanopore. , 2007, Applied physics letters.

[38]  Modular assembly of proteins on nanoparticles , 2018, Nature Communications.

[39]  Thierry Cloitre,et al.  Molecular Mechanism of Selective Binding of Peptides to Silicon Surface , 2014, J. Chem. Inf. Model..

[40]  Erik C. Dreaden,et al.  The Golden Age: Gold Nanoparticles for Biomedicine , 2012 .

[41]  Vikas Jhawat,et al.  Quality by design (QbD) approach of pharmacogenomics in drug designing and formulation development for optimization of drug delivery systems , 2017, Journal of controlled release : official journal of the Controlled Release Society.

[42]  F. Sanger,et al.  DNA sequencing with chain-terminating inhibitors. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[43]  K. Schulten,et al.  Steered molecular dynamics and mechanical functions of proteins. , 2001, Current opinion in structural biology.

[44]  Zuzanna S Siwy,et al.  Resistive-pulse DNA detection with a conical nanopore sensor. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[45]  Meni Wanunu,et al.  DNA translocation governed by interactions with solid-state nanopores. , 2008, Biophysical journal.

[46]  Iwao Ohdomari,et al.  Adsorption mechanism of ribosomal protein L2 onto a silica surface: a molecular dynamics simulation study. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[47]  Alessandro Laio,et al.  A molecular spring for vision. , 2004, Journal of the American Chemical Society.

[48]  Vincenzo Carravetta,et al.  Peptide-TiO2 surface interaction in solution by ab initio and molecular dynamics simulations. , 2006, The journal of physical chemistry. B.

[49]  S. Smith,et al.  Folding-unfolding transitions in single titin molecules characterized with laser tweezers. , 1997, Science.

[50]  H. Gaub,et al.  Adhesion forces between individual ligand-receptor pairs. , 1994, Science.

[51]  Robert Langer,et al.  Advances in Biomaterials for Drug Delivery , 2018, Advanced materials.

[52]  Bryce K. Allen,et al.  Relative Binding Free Energy Calculations in Drug Discovery: Recent Advances and Practical Considerations , 2017, J. Chem. Inf. Model..

[53]  Christoph F. Schmidt,et al.  Direct observation of kinesin stepping by optical trapping interferometry , 1993, Nature.

[54]  Ruth Pachter,et al.  Nature of molecular interactions of peptides with gold, palladium, and Pd-Au bimetal surfaces in aqueous solution. , 2009, Journal of the American Chemical Society.

[55]  X. Langlois,et al.  Pyrido[4,3-e][1,2,4]triazolo[4,3-a]pyrazines as Selective, Brain Penetrant Phosphodiesterase 2 (PDE2) Inhibitors. , 2015, ACS medicinal chemistry letters.

[56]  U. Keyser,et al.  Salt dependence of ion transport and DNA translocation through solid-state nanopores. , 2006, Nano letters.

[57]  A. V. van Duin,et al.  ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. , 2008, The journal of physical chemistry. A.

[58]  P. Carloni,et al.  Potassium permeation through the KcsA channel: a density functional study. , 2002, Biochimica et biophysica acta.

[59]  Laura Pérez-Benito,et al.  Acylguanidine Beta Secretase 1 Inhibitors: A Combined Experimental and Free Energy Perturbation Study. , 2017, Journal of chemical theory and computation.

[60]  R. Zhou,et al.  Amino acid analogues bind to carbon nanotube via π-π interactions: comparison of molecular mechanical and quantum mechanical calculations. , 2012, The Journal of chemical physics.

[61]  R. Dror,et al.  Long-timescale molecular dynamics simulations of protein structure and function. , 2009, Current opinion in structural biology.

[62]  William L Jorgensen,et al.  Computationally-guided optimization of a docking hit to yield catechol diethers as potent anti-HIV agents. , 2011, Journal of medicinal chemistry.

[63]  Rafael C. Bernardi,et al.  Molecular dynamics simulations of large macromolecular complexes. , 2015, Current opinion in structural biology.

[64]  Sandro Scandolo,et al.  An ab initio parametrized interatomic force field for silica , 2002 .

[65]  D'arcy W. Thompson,et al.  On Growth and Form , 1917, Nature.

[66]  R. Lavery,et al.  DNA: An Extensible Molecule , 1996, Science.

[67]  Biotic-Abiotic Interactions: Factors that Influence Peptide-Graphene Interactions. , 2015, ACS applied materials & interfaces.

[68]  H. Yamada,et al.  Structural Analysis of Metal-Binding Peptides Using Molecular Dynamics , 2018, ICBBB 2018.

[69]  David A. Sivak,et al.  Controlling DNA capture and propagation through artificial nanopores. , 2007, Nano letters.

[70]  Syma Khalid,et al.  Single-stranded DNA within nanopores: conformational dynamics and implications for sequencing; a molecular dynamics simulation study. , 2012, Biophysical journal.

[71]  Shu-Kun Lin Pharmacophore Perception, Development and Use in Drug Design. Edited by Osman F. Güner , 2000 .

[72]  M. Popall,et al.  Applications of hybrid organic–inorganic nanocomposites , 2005 .

[73]  M. Parrinello,et al.  Ab initio infrared spectrum of liquid water , 1997 .

[74]  Deyu Li,et al.  DNA translocation in inorganic nanotubes. , 2005, Nano letters.

[75]  Brian K. Shoichet,et al.  ZINC - A Free Database of Commercially Available Compounds for Virtual Screening , 2005, J. Chem. Inf. Model..

[76]  Ashraf Uddin,et al.  Organic - Inorganic Hybrid Solar Cells: A Comparative Review , 2012 .

[77]  William L. Jorgensen,et al.  Efficient discovery of potent anti-HIV agents targeting the Tyr181Cys variant of HIV reverse transcriptase. , 2011, Journal of the American Chemical Society.

[78]  Luigi Calzolai,et al.  Docking of ubiquitin to gold nanoparticles. , 2012, ACS nano.

[79]  K. Schulten,et al.  Intrinsic Stepwise Translocation of Stretched ssDNA in Graphene Nanopores , 2015, Nano letters.

[80]  Jitender Verma,et al.  3D-QSAR in drug design--a review. , 2010, Current topics in medicinal chemistry.

[81]  R. K. Mishra,et al.  Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: the INTERFACE force field. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[82]  Jejoong Yoo,et al.  Water Mediates Recognition of DNA Sequence via Ionic Current Blockade in a Biological Nanopore. , 2016, ACS nano.

[83]  Yu-qiang Ma,et al.  Computational investigation on DNA sequencing using functionalized graphene nanopores. , 2018, Physical chemistry chemical physics : PCCP.

[84]  Gang Fu,et al.  PubChem Substance and Compound databases , 2015, Nucleic Acids Res..

[85]  Meni Wanunu,et al.  Electromechanical unzipping of individual DNA molecules using synthetic sub-2 nm pores. , 2008, Nano letters.

[86]  Malcolm L. H. Green,et al.  Interaction of Tyrosine-, Tryptophan-, and Lysine-Containing Polypeptides with Single-Wall Carbon Nanotubes and Its Relevance for the Rational Design of Dispersing Agents , 2007 .

[87]  Vikas Varshney,et al.  Prediction of specific biomolecule adsorption on silica surfaces as a function of pH and particle size , 2014 .

[88]  Sheng-Yong Yang,et al.  Pharmacophore modeling and applications in drug discovery: challenges and recent advances. , 2010, Drug discovery today.

[89]  A. Caflisch,et al.  Molecular dynamics in drug design. , 2015, European journal of medicinal chemistry.

[90]  P. Carloni,et al.  SCIENTIFIC HIGHLIGHT OF THE MONTH : ” Ab Initio Modeling of Biological Systems ” Ab Initio Modeling of Biological Systems , 2022 .

[91]  S. Monti,et al.  Peptide/TiO2 surface interaction: a theoretical and experimental study on the structure of adsorbed ALA-GLU and ALA-LYS. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[92]  Antonio Lavecchia,et al.  In silico methods to address polypharmacology: current status, applications and future perspectives. , 2016, Drug discovery today.

[93]  R. Ghadari A study on the interactions of amino acids with nitrogen doped graphene; docking, MD simulation, and QM/MM studies. , 2016, Physical chemistry chemical physics : PCCP.

[94]  G. Timp,et al.  Stretching and unzipping nucleic acid hairpins using a synthetic nanopore , 2008, Nucleic acids research.

[95]  M. Tuckerman,et al.  Ab Initio Molecular Dynamics Investigation of the Concentration Dependence of Charged Defect Transport in Basic Solutions via Calculation of the Infrared Spectrum , 2002 .

[96]  Andres F. Oberhauser,et al.  Point mutations alter the mechanical stability of immunoglobulin modules , 2000, Nature Structural Biology.

[97]  Prashant K. Jain,et al.  Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine , 2009 .

[98]  Kenneth M. Merz,et al.  Drug Design : Structure-and Ligand-Based Approaches , 2017 .

[99]  Peter L. Freddolino,et al.  Ten-microsecond molecular dynamics simulation of a fast-folding WW domain. , 2008, Biophysical journal.

[100]  Peter L. Freddolino,et al.  Common structural transitions in explicit-solvent simulations of villin headpiece folding. , 2009, Biophysical journal.

[101]  Yu Huang,et al.  Tailoring molecular specificity toward a crystal facet: a lesson from biorecognition toward Pt{111}. , 2013, Nano letters.

[102]  Tiffany R Walsh,et al.  GolP-CHARMM: First-Principles Based Force Fields for the Interaction of Proteins with Au(111) and Au(100). , 2013, Journal of chemical theory and computation.

[103]  G. Kedziora,et al.  Computation of the binding free energy of peptides to graphene in explicit water. , 2015, The Journal of chemical physics.

[104]  Urs Staufer,et al.  Sensing protein molecules using nanofabricated pores , 2006 .

[105]  David S. Wishart,et al.  DrugBank: a comprehensive resource for in silico drug discovery and exploration , 2005, Nucleic Acids Res..

[106]  H. Ågren,et al.  Dynamics and self-assembly of bio-functionalized gold nanoparticles in solution: Reactive molecular dynamics simulations , 2018, Nano Research.

[107]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[108]  Y. Sugita,et al.  Biomolecular interactions modulate macromolecular structure and dynamics in atomistic model of a bacterial cytoplasm , 2016, eLife.

[109]  A. Warshel,et al.  Energetics of enzyme catalysis. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[110]  William L Jorgensen,et al.  From docking false-positive to active anti-HIV agent. , 2007, Journal of medicinal chemistry.

[111]  Marc Gershow,et al.  Recapturing and trapping single molecules with a solid-state nanopore. , 2007, Nature nanotechnology.

[112]  D. Marx,et al.  Modeling protonated water networks in bacteriorhodopsinPresented at the 81st International Bunsen Discussion Meeting on , 2004 .

[113]  Stephen Neidle,et al.  Molecular modeling and simulation of G-quadruplexes and quadruplex-ligand complexes. , 2010, Methods in molecular biology.

[114]  Wolfgang Lindner,et al.  Optical resonance-enhanced absorption-based near-field immunochip biosensor for allergen detection. , 2008, Analytical chemistry.

[115]  K. Schulten,et al.  Steered molecular dynamics investigations of protein function. , 2001, Journal of molecular graphics & modelling.

[116]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[117]  D. McNabb,et al.  Slowing DNA translocation in a solid-state nanopore. , 2005, Nano letters.

[118]  M. Niederweis,et al.  Nanopore DNA sequencing with MspA , 2010, Proceedings of the National Academy of Sciences.

[119]  Helmut Grubmüller,et al.  Mechanical properties of the icosahedral shell of southern bean mosaic virus: a molecular dynamics study. , 2009, Biophysical journal.

[120]  Klaus Schulten,et al.  Coarse grained protein-lipid model with application to lipoprotein particles. , 2006, The journal of physical chemistry. B.

[121]  S. Khalid,et al.  Atomistic molecular-dynamics simulations enable prediction of the arginine permeation pathway through OccD1/OprD from Pseudomonas aeruginosa. , 2014, Biophysical journal.

[122]  Alexander D. MacKerell,et al.  Development of an empirical force field for silica. Application to the quartz-water interface. , 2006, The journal of physical chemistry. B.

[123]  Rashid Bashir,et al.  Solid-state nanopore channels with DNA selectivity. , 2007, Nature nanotechnology.

[124]  Thierry Cloitre,et al.  Probing the mechanism of material specific peptides for optical biosensors , 2013, Microtechnologies for the New Millennium.

[125]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[126]  A. Laio,et al.  Escaping free-energy minima , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[127]  William L Jorgensen,et al.  FEP-guided selection of bicyclic heterocycles in lead optimization for non-nucleoside inhibitors of HIV-1 reverse transcriptase. , 2006, Journal of the American Chemical Society.

[128]  U. Keyser Controlling molecular transport through nanopores , 2011, Journal of The Royal Society Interface.

[129]  M. Levitt,et al.  Computer simulation of protein folding , 1975, Nature.

[130]  S. Köppen,et al.  Adsorption Orientation and Binding Motifs of Lysozyme and Chymotrypsin on Amorphous Silica , 2015 .

[131]  Colin W. G. Fishwick,et al.  Synthesis of de novo designed small-molecule inhibitors of bacterial RNA polymerase , 2008 .

[132]  Atli Thorarensen,et al.  Imidazotriazines: Spleen Tyrosine Kinase (Syk) Inhibitors Identified by Free‐Energy Perturbation (FEP) , 2016, ChemMedChem.

[133]  Rajesh R Naik,et al.  Chemistry of aqueous silica nanoparticle surfaces and the mechanism of selective peptide adsorption. , 2012, Journal of the American Chemical Society.

[134]  H. Heinz,et al.  Simulations of inorganic-bioorganic interfaces to discover new materials: insights, comparisons to experiment, challenges, and opportunities. , 2016, Chemical Society reviews.

[135]  Wataru Shinoda,et al.  Large-Scale Molecular Dynamics Simulations of Self-Assembling Systems , 2008, Science.

[136]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[137]  M. Menziani,et al.  FFSiOH: a New Force Field for Silica Polymorphs and Their Hydroxylated Surfaces Based on Periodic B3LYP Calculations , 2008 .

[138]  Ron O. Dror,et al.  Molecular Dynamics Simulation for All , 2018, Neuron.

[139]  Marc Gershow,et al.  Detecting single stranded DNA with a solid state nanopore. , 2005, Nano letters.

[140]  Y. Sugita,et al.  Challenges and opportunities in connecting simulations with experiments via molecular dynamics of cellular environments , 2018, Journal of physics. Conference series.

[141]  K. Schulten,et al.  The electromechanics of DNA in a synthetic nanopore. , 2006, Biophysical journal.

[142]  Alke Petri-Fink,et al.  Form Follows Function: Nanoparticle Shape and Its Implications for Nanomedicine. , 2017, Chemical reviews.

[143]  Klaus Schulten,et al.  Computational investigation of DNA detection using graphene nanopores. , 2011, ACS nano.

[144]  N. Vermeulen,et al.  The role of water molecules in computational drug design. , 2010, Current topics in medicinal chemistry.

[145]  John H. Van Drie,et al.  Computer-aided drug design: the next 20 years , 2007, J. Comput. Aided Mol. Des..

[146]  Aleksei Aksimentiev,et al.  Stretching DNA using the electric field in a synthetic nanopore. , 2005, Nano letters.

[147]  Vincenzo Carravetta,et al.  Interaction of biomolecular systems with titanium-based materials: computational investigations , 2009 .

[148]  Daniel Sebastiani,et al.  Generalized variational density functional perturbation theory , 2000 .

[149]  Julian Tirado-Rives,et al.  Computer-aided design of non-nucleoside inhibitors of HIV-1 reverse transcriptase. , 2006, Bioorganic & medicinal chemistry letters.

[150]  C. Dekker,et al.  Fabrication of solid-state nanopores with single-nanometre precision , 2003, Nature materials.

[151]  Klaus Schulten,et al.  Integration of energy and electron transfer processes in the photosynthetic membrane of Rhodobacter sphaeroides. , 2014, Biochimica et biophysica acta.

[152]  H. Bayley,et al.  Nanotechnology: Holes with an edge , 2010, Nature.

[153]  Albert C. Pan,et al.  Pathway and mechanism of drug binding to G-protein-coupled receptors , 2011, Proceedings of the National Academy of Sciences.

[154]  Laura Pérez-Benito,et al.  Application of Free Energy Perturbation for the Design of BACE1 Inhibitors , 2016, J. Chem. Inf. Model..

[155]  B. Sharma,et al.  Development of Biobased Synthetic Fluids: Application of Molecular Modeling to Structure-Physical Property Relationship † , 2006 .

[156]  Klaus Schulten,et al.  Simulations of membrane tubulation by lattices of amphiphysin N-BAR domains. , 2009, Structure.

[157]  Syma Khalid,et al.  Molecular dynamics simulations of DNA within a nanopore: arginine-phosphate tethering and a binding/sliding mechanism for translocation. , 2011, Biochemistry.

[158]  Klaus Schulten,et al.  Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis , 2009, Proceedings of the National Academy of Sciences.

[159]  Pedro Alexandrino Fernandes,et al.  Computational enzymatic catalysis--clarifying enzymatic mechanisms with the help of computers. , 2012, Physical chemistry chemical physics : PCCP.

[160]  Li-Qun Gu,et al.  Single protein pores containing molecular adapters at high temperatures. , 2005, Angewandte Chemie.

[161]  K Y Sanbonmatsu,et al.  High performance computing in biology: multimillion atom simulations of nanoscale systems. , 2007, Journal of structural biology.

[162]  C. Bustamante,et al.  Overstretching B-DNA: The Elastic Response of Individual Double-Stranded and Single-Stranded DNA Molecules , 1996, Science.

[163]  David A. Case,et al.  Perspective on “Dynamics of folded proteins” , 2000 .

[164]  Sudhir B. Kylasa,et al.  The ReaxFF reactive force-field: development, applications and future directions , 2016 .

[165]  Klaus Schulten,et al.  Stability and dynamics of virus capsids described by coarse-grained modeling. , 2006, Structure.

[166]  P. Tavan,et al.  Ligand Binding: Molecular Mechanics Calculation of the Streptavidin-Biotin Rupture Force , 1996, Science.

[167]  A. Cavalli,et al.  Role of Molecular Dynamics and Related Methods in Drug Discovery. , 2016, Journal of medicinal chemistry.

[168]  Elizabeth Yuriev,et al.  Free Energy Methods in Drug Design: Prospects of "Alchemical Perturbation" in Medicinal Chemistry. , 2017, Journal of medicinal chemistry.

[169]  Yue Cui,et al.  Preferential binding of peptides to graphene edges and planes. , 2011, Journal of the American Chemical Society.

[170]  Stefan Seeger,et al.  Investigating alanine-silica interaction by means of first-principles molecular-dynamics simulations. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[171]  Jing Wei,et al.  Multifunctional mesoporous composite microspheres with well-designed nanostructure: a highly integrated catalyst system. , 2010, Journal of the American Chemical Society.

[172]  Courtney R. Thomas,et al.  Mechanized silica nanoparticles: a new frontier in theranostic nanomedicine. , 2011, Accounts of chemical research.

[173]  Michael J. Aziz,et al.  Ion-beam sculpting at nanometre length scales , 2001, Nature.

[174]  J. Jestin,et al.  Well-Dispersed Fractal Aggregates as Filler in Polymer−Silica Nanocomposites: Long-Range Effects in Rheology , 2009, 0903.5380.

[175]  J. Yguerabide,et al.  Resonance light scattering particles as ultrasensitive labels for detection of analytes in a wide range of applications , 2001, Journal of cellular biochemistry. Supplement.

[176]  Neil Peterman,et al.  DNA translocation through graphene nanopores. , 2010, Nano letters.

[177]  R. Leighton,et al.  Feynman Lectures on Physics , 1971 .

[178]  T. Straatsma,et al.  Free energy of hydrophobic hydration: A molecular dynamics study of noble gases in water , 1986 .

[179]  M. Karplus,et al.  Dynamics of folded proteins , 1977, Nature.

[180]  J. Kermode,et al.  A first principles based polarizable O(N) interatomic force field for bulk silica. , 2010, The Journal of chemical physics.

[181]  Albert Rimola,et al.  Affinity Scale for the Interaction of Amino Acids with Silica Surfaces , 2009 .

[182]  Robert Abel,et al.  Accelerating drug discovery through tight integration of expert molecular design and predictive scoring. , 2017, Current opinion in structural biology.

[183]  Klaus Schulten,et al.  Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics , 2013, Nature.

[184]  Michele Parrinello,et al.  Anharmonic Raman spectra in high-pressure ice from ab initio simulations. , 2002, Physical review letters.

[185]  Gianfranco Menestrina,et al.  Ionic channels formed byStaphylococcus aureus alpha-toxin: Voltage-dependent inhibition by divalent and trivalent cations , 2005, The Journal of Membrane Biology.

[186]  Jacob D. Durrant,et al.  Molecular dynamics simulations and drug discovery , 2011, BMC Biology.

[187]  Peter L. Freddolino,et al.  Molecular dynamics simulations of the complete satellite tobacco mosaic virus. , 2006, Structure.

[188]  Alexander D. MacKerell,et al.  Recent Advances in Polarizable Force Fields for Macromolecules: Microsecond Simulations of Proteins Using the Classical Drude Oscillator Model , 2014, The journal of physical chemistry letters.

[189]  Edward W. Lowe,et al.  Computational Methods in Drug Discovery , 2014, Pharmacological Reviews.

[190]  K. Schulten,et al.  Orientation discrimination of single-stranded DNA inside the α-hemolysin membrane channel , 2005 .

[191]  M. Hartmann Ordered Mesoporous Materials for Bioadsorption and Biocatalysis , 2005 .

[192]  Yan Xu,et al.  Porous polymer monolithic column with surface-bound gold nanoparticles for the capture and separation of cysteine-containing peptides. , 2010, Analytical chemistry.

[193]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[194]  B. Luan,et al.  Close encounters with DNA , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[195]  B. Roux,et al.  Absolute binding free energy calculations of sparsomycin analogs to the bacterial ribosome. , 2010, The journal of physical chemistry. B.

[196]  Qi Wang,et al.  Theoretical study on key factors in DNA sequencing with graphene nanopores , 2013 .

[197]  H. Heinz Adsorption of biomolecules and polymers on silicates, glasses, and oxides: mechanisms, predictions, and opportunities by molecular simulation , 2016 .

[198]  M. Rief,et al.  Reversible unfolding of individual titin immunoglobulin domains by AFM. , 1997, Science.

[199]  R. Zwanzig High‐Temperature Equation of State by a Perturbation Method. I. Nonpolar Gases , 1954 .

[200]  C. Dekker,et al.  Translocation of double-strand DNA through a silicon oxide nanopore. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[201]  Thomas Lengauer,et al.  Computational methods for biomolecular docking. , 1996, Current opinion in structural biology.

[202]  Jennifer L. Knight,et al.  Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. , 2015, Journal of the American Chemical Society.