An ROI Visual-Analytical Approach for Exploring Uncertainty in Reservoir Models

Uncertainty in reservoir geological properties has a major impact on reservoir modeling and operations decision-making, and it leads to the generation of a large set of stochastic models, called geological realizations. Flow simulations are then used to quantify the uncertainty in predicting the hydrocarbon production. However, reservoir flow simulation is a computationally intensive task. In a recent paper, we proposed a visual based analytical framework to select a few models from a large ensemble of geological realizations. In this paper, we extend our prior framework by introducing the region of interest concept, that helps to perform the entire analysis only based on a specific portion of the reservoir. The effectiveness of region of interest selection techniques is shown on two case studies. We also performed a complete user study with the engineers. User feedback suggests that usefulness, usability and visual interactivity are the key strengths of our approach.

[1]  Ken Mela,et al.  Correlation Length and Fractal Dimension Interpretation from Seismic Data Using Variograms and Power Spectra,” Geophysics 66 , 2001 .

[2]  Zukui Li,et al.  Reservoir Geological Uncertainty Reduction: an Optimization-Based Method Using Multiple Static Measures , 2015, Mathematical Geosciences.

[3]  J. Caers Modeling Uncertainty in the Earth Sciences: Caers/Modeling Uncertainty in the Earth Sciences , 2011 .

[4]  Luca Cosentino,et al.  Integrated Reservoir Studies , 2001 .

[5]  Jennifer L. Dungan,et al.  Visualizing spatially varying distribution data , 2002, Proceedings Sixth International Conference on Information Visualisation.

[6]  Dekang Lin,et al.  An Information-Theoretic Definition of Similarity , 1998, ICML.

[7]  Peter Filzmoser,et al.  Brushing Moments in Interactive Visual Analysis , 2010, Comput. Graph. Forum.

[8]  Frank Maurer,et al.  Clustering of Geological Models for Reservoir Simulation Studies in a Visual Analytics Framework , 2016 .

[9]  Jens Ledet Jensen,et al.  Fast screening of geostatistical realizations for SAGD reservoir simulation , 2014 .

[10]  P. Goovaerts Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties , 1998, Biology and Fertility of Soils.

[11]  Darryl Fenwick,et al.  Using Metric Space Methods to Analyse Reservoir Uncertainty , 2011 .

[12]  Mario Costa Sousa,et al.  A Visual Analytics Framework for Exploring Uncertainties in Reservoir Models , 2018, VISIGRAPP.

[13]  A. Ardeshir Goshtasby,et al.  Image Registration Methods , 2012 .

[14]  David L. Kao,et al.  Visualization techniques for spatial probability density function data , 2004, Data Sci. J..

[15]  Akhil Datta-Gupta,et al.  Swept Volume Calculations and Ranking of Geostatistical Reservoir Models Using Streamline Simulation , 2000 .

[16]  Christopher K. I. Williams On a Connection between Kernel PCA and Metric Multidimensional Scaling , 2004, Machine Learning.

[17]  A. Ardeshir Goshtasby Image Registration: Principles, Tools and Methods , 2012 .

[18]  Helwig Hauser,et al.  Visualization and Visual Analysis of Multifaceted Scientific Data: A Survey , 2013, IEEE Transactions on Visualization and Computer Graphics.

[19]  Lars Linsen,et al.  Visual Analysis of Multi-Run Spatio-Temporal Simulations Using Isocontour Similarity for Projected Views , 2016, IEEE Transactions on Visualization and Computer Graphics.

[20]  David L. Kao,et al.  Visualizing spatial multivalue data , 2005, IEEE Computer Graphics and Applications.

[21]  Inderjit S. Dhillon,et al.  Kernel k-means: spectral clustering and normalized cuts , 2004, KDD.

[22]  Stefan Bruckner,et al.  Result-Driven Exploration of Simulation Parameter Spaces for Visual Effects Design , 2010, IEEE Transactions on Visualization and Computer Graphics.

[23]  Alexander J. Smola,et al.  Learning with Kernels: support vector machines, regularization, optimization, and beyond , 2001, Adaptive computation and machine learning series.

[24]  Andrew T. Wilson,et al.  Toward visual analysis of ensemble data sets , 2009, UltraVis '09.

[25]  Jef Caers,et al.  Modeling Uncertainty in the Earth Sciences , 2011 .

[26]  J. Caers,et al.  Stochastic Simulation of Patterns Using Distance-Based Pattern Modeling , 2010 .

[27]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[28]  Rüdiger Westermann,et al.  Multi-Charts for Comparative 3D Ensemble Visualization , 2014, IEEE Transactions on Visualization and Computer Graphics.

[29]  Frank Maurer,et al.  Filtering Geological Realizations for SAGD , 2017 .

[30]  Kwan-Liu Ma,et al.  A framework for uncertainty-aware visual analytics , 2009, 2009 IEEE Symposium on Visual Analytics Science and Technology.

[31]  Maurizio Ripepe,et al.  StrataBase: a stratigraphical database and processing program for microcomputers , 1988 .

[32]  Helwig Hauser,et al.  Accepted for Publication in Ieee Transactions on Visualization and Computer Graphics, Authors' Personal Copy 1 Interactive Visual Analysis of Heterogeneous Scientific Data across an Interface , 2022 .

[33]  Thomas Nocke,et al.  Visual exploration and evaluation of climate-related simulation data , 2007, 2007 Winter Simulation Conference.

[34]  Jef Caers,et al.  Bootstrap confidence intervals for reservoir model selection techniques , 2010 .

[35]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[36]  K. Aziz,et al.  Prediction Of Uncertainty In Reservoir Performance Forecast , 1992 .

[37]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2003, ICTAI.