Modified ridge-type for the Poisson regression model: simulation and application

The Poisson regression model (PRM) is employed in modelling the relationship between a count variable (y) and one or more explanatory variables. The parameters of PRM are popularly estimated using ...

[1]  B. M. Golam Kibria,et al.  A Simulation Study of Some Biasing Parameters for the Ridge Type Estimation of Poisson Regression , 2015, Commun. Stat. Simul. Comput..

[2]  B. M. Golam Kibria,et al.  Please Scroll down for Article Communications in Statistics -simulation and Computation on Some Ridge Regression Estimators: an Empirical Comparisons on Some Ridge Regression Estimators: an Empirical Comparisons , 2022 .

[3]  Mahdi Roozbeh,et al.  Optimal QR-based estimation in partially linear regression models with correlated errors using GCV criterion , 2018, Comput. Stat. Data Anal..

[4]  Shakeel Ahmad,et al.  Another proposal about the new two-parameter estimator for linear regression model with correlated regressors , 2020, Commun. Stat. Simul. Comput..

[5]  Kristofer Månsson,et al.  A Poisson ridge regression estimator , 2011 .

[6]  A. Lukman,et al.  Modified ridge‐type estimator to combat multicollinearity: Application to chemical data , 2019, Journal of Chemometrics.

[7]  Trevor Hastie,et al.  An Introduction to Statistical Learning , 2013, Springer Texts in Statistics.

[8]  Götz Trenkler,et al.  Mean squared error matrix comparisons between biased estimators — An overview of recent results , 1990 .

[9]  M. Amin,et al.  On the James-Stein estimator for the poisson regression model , 2020, Commun. Stat. Simul. Comput..

[10]  B. M. Golam Kibria,et al.  Journal of Modern Applied Statistical Methods Some Ridge Regression Estimators and Their Performances Some Ridge Regression Estimators and Their Performances , 2022 .

[11]  M. A. Alkhamisi,et al.  A Monte Carlo Study of Recent Ridge Parameters , 2007, Commun. Stat. Simul. Comput..

[12]  Ashok V. Dorugade On Comparison of Some Ridge Parameters in Ridge Regression , 2014 .

[13]  M. Revan Özkale,et al.  The Restricted and Unrestricted Two-Parameter Estimators , 2007 .

[14]  G. Khalaf,et al.  Choosing Ridge Parameter for Regression Problems , 2005 .

[15]  Ghazi Shukur,et al.  Some Modifications for Choosing Ridge Parameters , 2006 .

[16]  Xinfeng Chang,et al.  A New Two-Parameter Estimator in Linear Regression , 2010 .

[17]  F. Akdeniz,et al.  Efficiency of the generalized-difference-based weighted mixed almost unbiased two-parameter estimator in partially linear model , 2017 .

[18]  Z. Algamal,et al.  A New Ridge Estimator for the Poisson Regression Model , 2019, Iranian Journal of Science and Technology, Transactions A: Science.

[19]  Muhammad Amin,et al.  Performance of some new Liu parameters for the linear regression model , 2020, Communications in Statistics - Theory and Methods.

[20]  B. M. Kibria,et al.  Performance of Some New Ridge Regression Estimators , 2003 .

[21]  A. S. Ajiboye,et al.  Monte Carlo Study of Some Classification-Based Ridge Parameter Estimators , 2017 .

[22]  Liu Kejian,et al.  A new class of blased estimate in linear regression , 1993 .

[23]  Morteza Amini,et al.  Optimal partial ridge estimation in restricted semiparametric regression models , 2015, J. Multivar. Anal..

[24]  A. E. Hoerl,et al.  Ridge regression:some simulations , 1975 .

[25]  A. Lukman,et al.  A Modified New Two-Parameter Estimator in a Linear Regression Model , 2019, Modelling and Simulation in Engineering.

[26]  Selahattin Kaçıranlar,et al.  A new biased estimator based on ridge estimation , 2008 .

[27]  A. Genç,et al.  A New Two-Parameter Estimator for the Poisson Regression Model , 2018 .

[28]  Mohammad Ghasem Akbari,et al.  Ridge estimation in semi-parametric regression models under the stochastic restriction and correlated elliptically contoured errors , 2020, J. Comput. Appl. Math..

[29]  Kejian Liu Using Liu-Type Estimator to Combat Collinearity , 2003 .

[30]  An unbiased estimator with prior information , 2020 .

[31]  Pär Sjölander,et al.  Improved Liu Estimators for the Poisson Regression Model , 2012 .

[32]  B. F. Swindel Good ridge estimators based on prior information , 1976 .