Sideslip angle estimation based on input–output linearisation with tire–road friction adaptation

An adaptive sideslip angle observer considering tire–road friction adaptation is proposed in this paper. The single-track vehicle model with nonlinear tire characteristics is adopted. The tire parameters can be easily obtained through road test data without using special test rigs. Afterwards, this model is reconstructed and a high-gain observer (HGO) based on input–output linearisation is derived. The observer stability is analysed. Experimental results have confirmed that the HGO has a better computational efficiency with the same accuracy when compared with the extended Kalman filter and the Luenberger observer. Finally, a road friction adaptive algorithm based on vehicle lateral dynamics is proposed and validated through driving simulator data. As long as the tires work in the nonlinear region, the maximal friction coefficient could be estimated. This algorithm has excellent portability and is also suitable for other observers.

[1]  J. Zuurbier,et al.  State estimation for integrated vehicle dynamics control , 2002 .

[2]  Hans B. Pacejka,et al.  Tire and Vehicle Dynamics , 1982 .

[3]  Aleksander B. Hac,et al.  Estimation of Vehicle Side Slip Angle and Yaw Rate , 2000 .

[4]  Huei Peng,et al.  A study on lateral speed estimation methods , 2004 .

[5]  Uwe Kiencke,et al.  Observation of Lateral Vehicle Dynamics , 1996 .

[6]  Hideaki Sasaki,et al.  A Side-Slip Angle Estimation Using Neural Network for a Wheeled Vehicle , 2000 .

[7]  Ferdinand Svaricek,et al.  Nulldynamik linearer und nichtlinearer Systeme: Definitionen, Eigenschaften und Anwendungen (Zero Dynamics of Linear and Nonlinear Systems: Definitions, Properties and Applications) , 2006, Autom..

[8]  Tor Arne Johansen,et al.  Vehicle velocity estimation using nonlinear observers , 2006, Autom..

[9]  Klaus Röbenack,et al.  Zum High-Gain-Beobachterentwurf für eingangs-/ausgangslinearisierbare SISO-Systeme (About High Gain Observer Design for Input-Output Linearizable SISO Systems) , 2004 .

[10]  Yoshiki Fukada,et al.  SLIP-ANGLE ESTIMATION FOR VEHICLE STABILITY CONTROL , 1999 .

[11]  H.F. Grip,et al.  Nonlinear Vehicle Velocity Observer with Road-Tire Friction Adaptation , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[12]  Paul J.Th. Venhovens,et al.  Vehicle Dynamics Estimation Using Kalman Filters , 1999 .

[13]  Nam Hoon Jo,et al.  Input output linearization approach to state observer design for nonlinear system , 2000, IEEE Trans. Autom. Control..

[14]  Huei Peng,et al.  Experimental Verification of Lateral Speed Estimation Methods , 2002 .

[15]  Jochen Wiedemann,et al.  Nichtlineare Lenkregler für den querdynamischen Grenzbereich (Nonlinear Steering Controllers for the Lateral Dynamics Stability Limit) , 2007, Autom..

[16]  Matt C. Best,et al.  An Extended Adaptive Kalman Filter for Real-time State Estimation of Vehicle Handling Dynamics , 2000 .

[17]  Ali Charara,et al.  Evaluation of a sliding mode observer for vehicle sideslip angle , 2007 .

[18]  Edoardo Sabbioni,et al.  A methodology for vehicle sideslip angle identification: comparison with experimental data , 2007 .

[19]  H. Tsunashima,et al.  Vehicle and road state estimation using interacting multiple model approach , 2006 .

[20]  Uwe Kiencke,et al.  Determination of the vehicle body side slip angle with non-linear observer strategies , 2005 .

[21]  Charara Ali,et al.  Evaluation of sliding mode observer for vehicle sideslip angle , 2005 .