Silicon Carbide MOSFET Integrated Circuit Technology

The research and development activities carried out to demonstrate the status of MOS planar technology for the manufacture of high temperature SiC ICs will be described. These activities resulted in the design, fabrication and demonstration of the World's first SiC analog IC - a monolithic MOSFET operational amplifier. Research tasks required for the development of a planar SiC MOSFET IC technology included characterization of the SiC/SiO 2 interface using thermally grown oxides; high temperature (350°C) reliability studies of thermally grown oxides; ion implantation studies of donor (N) and acceptor (B) dopants to form junction diodes: epitaxial layer characterization; N channel inversion and depletion mode MOSFETs ; device isolation methods and finally integrated circuit design, fabrication and testing of the World's first monolithic SiC operational amplifier IC. These studies defined a SiC n-channel depletion mode MOSFET IC technology and outlined tasks required to improve all types of SiC devices. For instance, high temperature circuit drift instabilities at 350 °C were discovered and characterized. This type of instability needs to be understood and resolved because it affects the high temperature reliability of other types of SiC devices. Improvements in SiC wafer surface quality and the use of deposited oxides instead of thermally grown SiO2 gate dielectrics will probably be required for enhanced reliability. The slow reverse recovery time exhibited by n + -p diodes formed by N ion implantation is a problem that needs to be resolved for all types of planar bipolar devices. The reproducibility of acceptor implants needs to be improved before CMOS ICs and many types of power device structures will be manufacturable.

[1]  C. Carter,et al.  Characterization of Defect Structures in SiC Single Crystals Using Synchrotron X-Ray Topography , 1993 .

[2]  A. Moritani,et al.  CONTROLLED SUBLIMATION GROWTH OF SINGLE CRYSTALLINE 4H-SIC AND 6H-SIC AND IDENTIFICATION OF POLYTYPES BY X-RAY DIFFRACTION , 1991 .

[3]  John W. Palmour,et al.  Improved oxidation procedures for reduced SiO2/SiC defects , 1996 .

[4]  L. Terman An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes , 1962 .

[5]  P. V. Gray,et al.  Si ‐ SiO2 Fast Interface State Measurements , 1968 .

[6]  Michael R. Melloch,et al.  Characterization and optimization of the SiO2/SiC metal-oxide semiconductor interface , 1995 .

[7]  J. Palmour,et al.  Dopant Redistribution during Thermal Oxidation of Monocrystalline Beta ‐ SiC Thin Films , 1989 .

[8]  James W. Kretchmer,et al.  Silicon carbide MOSFET technology , 1996 .

[9]  Kenichi Ishii,et al.  High-Temperature Operation of Silicon Carbide MOSFET , 1987 .

[10]  William E. Engeler,et al.  Performance of refractory metal multilevel interconnection system , 1972 .

[11]  P. V. Gray,et al.  DENSITY OF SiO2–Si INTERFACE STATES , 1966 .

[12]  N. Holonyak,et al.  MP-B1 photopumped MO-CVD quantum-well Al x Ga 1-x As-GaAs-Al x Ga 1-x As heterostructure lasers (x = 0.4-0.6, L z ≥ 200 Å, T = 4.2-300 K) , 1978 .

[13]  J. Palmour,et al.  Characterization of device parameters in high-temperature metal-oxide-semiconductor field-effect transistors in β-SiC thin films , 1988 .

[14]  C. S. Fuller,et al.  Mobility of Impurity Ions in Germanium and Silicon , 1953 .

[15]  G. Taylor,et al.  Modeling of an ion-implanted silicon-gate depletion-mode IGFET , 1975, IEEE Transactions on Electron Devices.

[16]  G. Ziegler,et al.  Single crystal growth of SiC substrate material for blue light emitting diodes , 1983, IEEE Transactions on Electron Devices.

[17]  Philip G. Neudeck,et al.  Site‐competition epitaxy for superior silicon carbide electronics , 1994 .

[18]  K. Taniguchi,et al.  Time-dependent-dielectric breakdown of thin thermally grown SiO2films , 1985, IEEE Transactions on Electron Devices.

[19]  Philip G. Neudeck,et al.  Progress in silicon carbide semiconductor electronics technology , 1995 .

[20]  William E. Engeler,et al.  Self‐Registered Molybdenum‐Gate MOSFET , 1968 .

[21]  P. V. Gray,et al.  Doping Profiles by MOSFET Deep Depletion C(V) , 1975 .

[22]  Y. Hayashi,et al.  Experimental 3C-SiC MOSFET , 1986, IEEE Electron Device Letters.

[23]  W. J. Choyke,et al.  SiC boule growth by sublimation vapor transport , 1991 .

[24]  Robert F. Davis,et al.  Chemical vapor deposition and characterization of 6H‐SiC thin films on off‐axis 6H‐SiC substrates , 1988 .

[25]  M. Ghezzo,et al.  Boron-implanted 6H-SiC diodes , 1993 .

[26]  Richard Joseph Saia,et al.  Silicon carbide UV photodiodes , 1993 .

[27]  W. J. Choyke,et al.  Hydrogen incorporation in boron-doped 6H-SiC CVD epilayers produced using site-competition epitaxy , 1995 .

[28]  M. Ghezzo,et al.  Nitrogen-implanted SiC diodes using high-temperature implantation , 1992, IEEE Electron Device Letters.

[29]  H. Matsunami,et al.  VPE Growth of SiC on Step-Controlled Substrates , 1989 .

[30]  J. Palmour,et al.  SiC MOS interface characteristics , 1994 .

[31]  W. R. Cady,et al.  The P-channel refractory metal self-registered MOSFET , 1971 .

[32]  V. Tsvetkov,et al.  Investigation of growth processes of ingots of silicon carbide single crystals , 1978 .

[33]  M. V. Rao,et al.  Al and B ion‐implantations in 6H‐ and 3C‐SiC , 1995 .