Early Mesoproterozoic metamorphism in the Barossa Complex, South Australia: links with the eastern margin of Proterozoic Australia

LA-ICP-MS U–Pb geochronological data from metamorphic monazite in granulite-facies metapelites in the Barossa Complex, southern Australia, yield ages in the range 1580–1550 Ma. Metapelitic rocks from the Myponga and Houghton Inliers contain early biotite–sillimanite-bearing assemblages that underwent partial melting to produce peak metamorphic garnet–sillimanite-bearing anatectic assemblages. Phase equilibrium modelling suggests a clockwise P–T evolution with peak temperatures between 800 and 870°C and peak pressures of 8–9 kbar, followed by decompression to pressures of ∼6 kbar. In combination with existing age data, the monazite U–Pb ages indicate that the early Mesoproterozoic evolution of the Barossa Complex is contemporaneous with other high geothermal gradient metamorphic terranes in eastern Proterozoic Australia. The areal extent of early Mesoproterozoic metamorphism in eastern Australia suggests that any proposed continental reconstructions involving eastern Proterozoic Australia should share a similar tectonothermal history.

[1]  A. Collins,et al.  Geologically constraining India in Columbia: The age, isotopic provenance and geochemistry of the protoliths of the Ongole Domain, Southern Eastern Ghats, India , 2014 .

[2]  S. Bogdanova,et al.  Recurrent high grade metamorphism recording a 300Ma long Proterozoic crustal evolution in the western part of the East European Craton , 2014 .

[3]  M. Hand,et al.  Long‐lived high‐T, low‐P granulite facies metamorphism in the Arunta Region, central Australia , 2014 .

[4]  M. Hand,et al.  Conductively driven, high‐thermal gradient metamorphism in the Anmatjira Range, Arunta region, central Australia , 2013 .

[5]  T. Ivanic,et al.  Leucosome distribution in migmatitic paragneisses and orthogneisses: A record of self-organized melt migration and entrapment in a heterogeneous partially-molten crust , 2013 .

[6]  R. Dall’Agnol,et al.  Geochemistry and origin of the early Mesoproterozoic mangerite–charnockite–rapakivi granite association of the Serra da Providência suite and associated gabbros, central–eastern Rondônia, SW Amazonian Craton, Brazil , 2013 .

[7]  K. Das,et al.  Tectonic evolution of the Eastern Ghats Belt, India , 2013 .

[8]  I. Sanislav,et al.  Polymetamorphism accompanied switching in horizontal shortening during Isan Orogeny: Example from the Eastern Fold Belt, Mount Isa Inlier, Australia , 2013 .

[9]  G. Gibson,et al.  Depositional systems in the Mt Isa Inlier from 1800 Ma to 1640 Ma: Implications for Zn–Pb–Ag mineralisation , 2013 .

[10]  M. Hand,et al.  Evidence for late Paleoproterozoic (ca 1690-1665Ma) high- to ultrahigh-temperature metamorphism in southern Australia: Implications for Proterozoic supercontinent models , 2013 .

[11]  S. Boger,et al.  The importance of iron speciation (Fe+2/Fe+3) in determining mineral assemblages: an example from the high‐grade aluminous metapelites of southeastern Madagascar , 2012 .

[12]  Huaichun Wu,et al.  Pre-Rodinia supercontinent Nuna shaping up: A global synthesis with new paleomagnetic results from North China , 2012 .

[13]  L. Ailleres,et al.  Constraints on long-lived Mesoproterozoic and Palaeozoic deformational events and crustal architecture in the northern Mount Painter Province, Australia , 2012 .

[14]  Yue Zhao,et al.  U–Pb geochronology and geochemistry of the bedrocks and moraine sediments from the Windmill Islands: Implications for Proterozoic evolution of East Antarctica , 2012 .

[15]  M. Wingate,et al.  Geochemistry and geochronology of the c. 1585Ma Benagerie Volcanic Suite, southern Australia: Relationship to the Gawler Range Volcanics and implications for the petrogenesis of a Mesoproterozoic silicic large igneous province , 2012 .

[16]  D. Giles,et al.  Cooling and exhumation history of the northeastern Gawler Craton, South Australia , 2012 .

[17]  M. Hand,et al.  Mesoarchean to Mesoproterozoic Evolution of the Southern Gawler Craton, South Australia , 2012 .

[18]  M. Grove,et al.  Separating metamorphic events in the Fosdick migmatite–granite complex, West Antarctica , 2012 .

[19]  J. H. Stout,et al.  Stability of sapphirine + quartz in the oxidized rocks of the Wilson Lake terrane, Labrador: calculated equilibria in NCKFMASHTO , 2012 .

[20]  K. J. Meaney The geochronology and structural evolution of the Warren Inlier and Springfield Sequence, Mt. Lofty Ranges: Implications for Proterozoic paleogeographic reconstructions , 2012 .

[21]  D. Bradley Secular trends in the geologic record and the supercontinent cycle , 2011 .

[22]  K. Das,et al.  India-Antarctica-Australia-Laurentia connection in the Paleoproterozoic–Mesoproterozoic revisited: Evidence from new zircon U-Pb and monazite chemical age data from the Eastern Ghats Belt, India , 2011 .

[23]  E. Belousova,et al.  U–Pb zircon, zircon Hf and whole-rock Sm–Nd isotopic constraints on the evolution of Paleoproterozoic rocks in the northern Gawler Craton , 2011 .

[24]  M. Hand,et al.  Evidence for early Mesoproterozoic (ca. 1590 Ma) ultrahigh-temperature metamorphism in southern Australia , 2011 .

[25]  D. Harlov,et al.  Resetting monazite ages during fluid-related alteration , 2011 .

[26]  Kazuhiro Suzuki,et al.  Using P-T paths to interpret the tectonothermal setting of prograde metamorphism: an example from the northeastern Gawler Craton, South Australia , 2011 .

[27]  T. Johnson,et al.  Phase equilibrium constraints on conditions of granulite-facies metamorphism at Scourie, NW Scotland , 2011, Journal of the Geological Society.

[28]  K. Högdahl,et al.  Reactive monazite and robust zircon growth in diatexites and leucogranites from a hot, slowly cooled orogen: implications for the Palaeoproterozoic tectonic evolution of the central Fennoscandian Shield, Sweden , 2011, Contributions to Mineralogy and Petrology.

[29]  R. Powell,et al.  Influence of ferric iron on the stability of mineral assemblages , 2010 .

[30]  C. Siddoway,et al.  Modeling multiple melt loss events in the evolution of an active continental margin , 2010 .

[31]  M. Brown,et al.  The spatial and temporal patterning of the deep crust and implications for the process of melt extraction , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[32]  D. Cherniak Diffusion in Accessory Minerals: Zircon, Titanite, Apatite, Monazite and Xenotime , 2010 .

[33]  C. Clark,et al.  Decoding Mesoproterozoic and Cambrian metamorphic events in Willyama Complex metapelites through the application of Sm–Nd garnet geochronology and P–T pseudosection analysis , 2010 .

[34]  Michael Brown Melting of the continental crust during orogenesis: the thermal, rheological, and compositional consequences of melt transport from lower to upper continental crust1 , 2010 .

[35]  Mohammad Sayab,et al.  Tectonic significance of structural successions preserved within low-strain pods: implications for thin- to thick-skinned tectonics vs. multiple near-orthogonal folding events in the Palaeo-Mesoproterozoic Mount Isa Inlier (NE Australia) , 2009 .

[36]  Å. Johansson Baltica, Amazonia and the SAMBA connection—1000 million years of neighbourhood during the Proterozoic? , 2009 .

[37]  A. Gerdes,et al.  Unraveling Sedimentary Provenance and Tectonothermal History of High‐Temperature Metapelites, Using Zircon and Monazite Chemistry: A Case Study from the Eastern Ghats Belt, India , 2009, The Journal of Geology.

[38]  P. Haines,et al.  Isotopic and geochemical characterisation of the Cambrian Kanmantoo Group, South Australia: implications for stratigraphy and provenance , 2009 .

[39]  P. Betts,et al.  Mesoproterozoic plume‐modified orogenesis in eastern Precambrian Australia , 2009 .

[40]  B. Frost,et al.  Constraints on the early metamorphic evolution of Broken Hill, Australia, from in situ U‐Pb dating and REE geochemistry of monazite , 2009 .

[41]  R. Tosdal,et al.  The Rondonian-San Ignacio Province in the SW Amazonian Craton: An overview , 2009 .

[42]  M. Hand,et al.  Correlations and reconstruction models for the 2500-1500 Ma evolution of the Mawson Continent , 2009 .

[43]  M. Brown,et al.  Some Remarks on Melting and Extreme Metamorphism of Crustal Rocks , 2009 .

[44]  B. Wade,et al.  Crustal architecture during the early Mesoproterozoic Hiltaba-related mineralisation event: are the Gawler Range Volcanics a foreland basin fill? , 2008 .

[45]  Martin Hand,et al.  The Musgrave Province: Stitching north, west and south Australia , 2008 .

[46]  W. Preiss,et al.  Understanding the 1720-1640Ma Palaeoproterozoic Willyama Supergroup, Curnamona Province, Southeastern Australia: Implications for tectonics, basin evolution and ore genesis , 2008 .

[47]  M. Hand,et al.  Petrogenesis of the St Peter Suite, southern Australia: Arc magmatism and Proterozoic crustal growth of the South Australian Craton , 2008 .

[48]  P. Betts,et al.  Comparing 1800-1600 Ma accretionary and basin processes in Australia and Laurentia: Possible geographic connections in Columbia , 2008 .

[49]  P. Betts,et al.  Reinterpretation of the tectonic context of high-temperature metamorphism in the Broken Hill Block, NSW, and implications on the Palaeo- to Meso-Proterozoic evolution , 2008 .

[50]  R. Powell,et al.  Granulite facies metamorphism and subsolidus fluid‐absent reworking, Strangways Range, Arunta Block, central Australia , 2008 .

[51]  B. Wade,et al.  Temporal constraints on the timing of high-grade metamorphism in the northern Gawler Craton: implications for assembly of the Australian Proterozoic , 2008 .

[52]  S. Pisarevsky,et al.  Plate tectonics on early Earth? Weighing the paleomagnetic evidence , 2008 .

[53]  J. Connelly,et al.  Long-term convergence along SW Fennoscandia: 330 m.y. of Proterozoic crustal growth [Precam Res 161 (2008) 452–472] , 2008 .

[54]  C. Fanning,et al.  Age constraints on the tectonothermal evolution of the Selwyn Zone, Eastern Fold Belt, Mount Isa Inlier , 2008 .

[55]  Geordie Mark,et al.  The protracted hydrothermal evolution of the Mount Isa Eastern Succession: A review and tectonic implications , 2008 .

[56]  F. Murphy,et al.  The crustal scale architecture of the Eastern Succession, Mount Isa: The influence of inversion , 2008 .

[57]  C. Simpson,et al.  Evolution and architecture of a large felsic Igneous Province in western Laurentia: The 1.6 Ga Gawler Range Volcanics, South Australia , 2008 .

[58]  R. Vernon,et al.  False metamorphic events inferred from misinterpretation of microstructural evidence and P–T data , 2008 .

[59]  R. Simmat,et al.  U–Th–Pb monazite geochronometry of the Eastern Ghats Belt, India: Timing and spatial disposition of poly-metamorphism , 2008 .

[60]  J. Connelly,et al.  Long-term convergence along SW fennoscandia: 330 m.y. of proterozoic crustal growth , 2008 .

[61]  C. Clark,et al.  Thermobarometric modelling of zircon and monazite growth in melt‐bearing systems: examples using model metapelitic and metapsammitic granulites , 2008 .

[62]  B. Bingen,et al.  The East European Craton (Baltica) before and during the assembly of Rodinia , 2008 .

[63]  C. J. Forbesa,et al.  Reinterpretation of the tectonic context of high-temperature metamorphism in the Broken Hill Block , NSW , and implications on the Palaeo-to MesoProterozoic evolution , 2008 .

[64]  E. Bastrakov,et al.  Timing of Iron Oxide Cu-Au-(U) Hydrothermal Activity and Nd Isotope Constraints on Metal Sources in the Gawler Craton, South Australia , 2007 .

[65]  M. Hand,et al.  Tectonic Framework and Evolution of the Gawler Craton, Southern Australia , 2007 .

[66]  P. Betts,et al.  Dating Prograde Amphibolite and Granulite Facies Metamorphism Using In Situ Monazite U‐Pb SHRIMP Analysis , 2007, The Journal of Geology.

[67]  B. Stevens A structural metamorphic study of the Broken Hill Block, NSW, Australia: discussion , 2007 .

[68]  M. Brown,et al.  Crustal melting and melt extraction, ascent and emplacement in orogens: mechanisms and consequences , 2007, Journal of the Geological Society.

[69]  R. Powell,et al.  Progress relating to calculation of partial melting equilibria for metapelites , 2007 .

[70]  M. Hand,et al.  Timing of Proterozoic metamorphism in the southern Curnamona Province: implications for tectonic models and continental reconstructions , 2007 .

[71]  B. Wade,et al.  Timing of Proterozoic high-grade metamorphism in the Barossa Complex, southern South Australia: exploring the extent of the 1590 Ma event Barossa Complex, 1590 Ma metamorphic event , 2007 .

[72]  W. Griffin,et al.  Tectonic affinities of the Houghton Inlier, South Australia: U – Pb and Hf-isotope data from zircons in modern stream sediments , 2006 .

[73]  M. Hand,et al.  Provenance of metasedimentary rocks in the northern Gawler Craton, Australia: Implications for Palaeoproterozoic reconstructions , 2006 .

[74]  K. Mezger,et al.  Emplacement and deformation of the Vinukonda meta-granite (Eastern Ghats, India)—Implications for the geological evolution of peninsular India and for Rodinia reconstructions , 2006 .

[75]  J. Baker,et al.  LA-MC-ICPMS Pb–Pb dating of rutile from slowly cooled granulites: Confirmation of the high closure temperature for Pb diffusion in rutile , 2006 .

[76]  K. Blake,et al.  Time constraints on deformation and metamorphism from EPMA dating of monazite in the Proterozoic Robertson River Metamorphics, NE Australia , 2006 .

[77]  M. Elburg,et al.  The Timing and Duration of the Delamerian Orogeny: Correlation with the Ross Orogen and Implications for Gondwana Assembly , 2006, The Journal of Geology.

[78]  M. Sayab Decompression through clockwise P–T path: implications for early N–S shortening orogenesis in the Mesoproterozoic Mt Isa Inlier (NE Australia) , 2006 .

[79]  M. J. Rubenach,et al.  Isograd pattern and regional low-pressure, high-temperature metamorphism of pelitic, mafic and calc-silicate rocks along an east – west section through the Mt Isa Inlier , 2006 .

[80]  P. Betts,et al.  The 1800–1100 Ma tectonic evolution of Australia , 2006 .

[81]  B. Wade,et al.  Evidence for Early Mesoproterozoic Arc Magmatism in the Musgrave Block, Central Australia: Implications for Proterozoic Crustal Growth and Tectonic Reconstructions of Australia , 2006, The Journal of Geology.

[82]  L. Srogi,et al.  Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington Complex, Delaware: Morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and monazite , 2006 .

[83]  P. Betts,et al.  A structural metamorphic study of the Broken Hill Block, NSW, Australia , 2005 .

[84]  T. Bell,et al.  Multiple Foliations Defined by Different Sillimanite Crystal Habits, Partial Melting and the Late Metamorphic Development of the Cannington Ag-Pb-Zn Deposit, Northeast Australia , 2005 .

[85]  C. Clark,et al.  Cambrian reworking of the southern Australian Proterozoic Curnamona Province: constraints from regional shear-zone systems , 2005, Journal of the Geological Society.

[86]  R. Powell,et al.  An in situ metatexite–diatexite transition in upper amphibolite facies rocks from Broken Hill, Australia , 2005 .

[87]  W. Griffin,et al.  U-Pb isotopic ages and Hf isotopic composition of single zircons: The search for juvenile Precambrian continental crust , 2005 .

[88]  B. Stevens,et al.  Correlation of Olary and Broken Hill Domains, Curnamona Province: Possible Relationship to Mount Isa and Other North Australian Pb-Zn-Ag-Bearing Successions , 2005 .

[89]  C. Nicollet,et al.  Two contrasted P–T–time paths of coronitic metanorites of the French Massif Central: are reaction textures reliable guides to metamorphic histories? , 2005 .

[90]  M. Handy,et al.  Experimental deformation of partially melted granite revisited: implications for the continental crust , 2005 .

[91]  R. Hyndman,et al.  Subduction zone backarcs, mobile belts, and orogenic heat , 2005 .

[92]  I. Buick,et al.  An extended episode of early Mesoproterozoic metamorphic fluid flow in the Reynolds Range, central Australia* , 2004 .

[93]  R. Powell,et al.  Spatially‐focussed melt formation in aluminous metapelites from Broken Hill, Australia , 2004 .

[94]  S. Boger,et al.  Metamorphic evolution of the Georgetown Inlier, northeast Queensland, Australia; evidence for an accreted Palaeoproterozoic terrane? , 2004 .

[95]  W. Griffin,et al.  Archean crustal evolution in the northern Yilgarn Craton: U–Pb and Hf-isotope evidence from detrital zircons , 2004 .

[96]  W. Griffin,et al.  Mid-Proterozoic magmatic arc evolution at the southwest margin of the Baltic Shield ☆ , 2004 .

[97]  P. Betts,et al.  1.8–1.5-Ga links between the North and South Australian Cratons and the Early–Middle Proterozoic configuration of Australia , 2004 .

[98]  E. Watson,et al.  Pb diffusion in monazite: a combined RBS/SIMS study , 2004 .

[99]  C. Edgoose,et al.  Geology of the Musgrave Block, Northern Territory : also 'Northwestern Musgrave Block Special' explanatory notes , 2004 .

[100]  R. Powell,et al.  New constraints on metamorphism in the Rauer Group, Prydz Bay, east Antarctica , 2003 .

[101]  R. Powell,et al.  (Th+U)-Pb monazite ages from Al-Mg-rich metapelites, Rauer Group, east Antarctica , 2003 .

[102]  R. Powell,et al.  Orthopyroxene–sillimanite–quartz assemblages: distribution, petrology, quantitative P–T–X constraints and P–T paths , 2003 .

[103]  R. Powell,et al.  Activity–composition relations for phases in petrological calculations: an asymmetric multicomponent formulation , 2003 .

[104]  Peter G. Betts,et al.  Evolution of the Mount Woods Inlier, northern Gawler Craton, Southern Australia: an integrated structural and aeromagnetic analysis , 2003 .

[105]  M. Raith,et al.  Crustal architecture and evolution of the Eastern Ghats Belt and adjacent regions of India , 2003, Geological Society, London, Special Publications.

[106]  W. R. Schmus,et al.  Geological evolution of the basement rocks in the east-central part of the Rondônia Tin Province, SW Amazonian craton, Brazil: U–Pb and Sm–Nd isotopic constraints , 2002 .

[107]  L. Testut,et al.  1.60 Ga felsic volcanic blocks in the moraines of the Terre Adélie Craton, Antarctica: Comparisons with the Gawler Range Volcanics, South Australia , 2002 .

[108]  T. Holland,et al.  Mixing properties of phengitic micas and revised garnet‐phengite thermobarometers , 2002 .

[109]  R. Powell,et al.  Melt loss and the preservation of granulite facies mineral assemblages , 2002 .

[110]  W. Collins Nature of extensional accretionary orogens , 2002 .

[111]  A. Nutman,et al.  SHRIMP U–Pb monazite dating of 1600–1580 Ma amphibolite facies metamorphism in the southeastern Mt Isa Block, Australia , 2002 .

[112]  M. Brown,et al.  Grain‐scale melt distribution in two contact aureole rocks: implications for controls on melt localization and deformation , 2002 .

[113]  R. Powell,et al.  The interpretation of reaction textures in Fe‐rich metapelitic granulites of the Musgrave Block, central Australia: constraints from mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 , 2002 .

[114]  M. Babinski,et al.  Proterozoic geologic evolution of the SW part of the Amazonian Craton in Mato Grosso state, Brazil , 2001 .

[115]  S. Harlan,et al.  Long-lived (1.8-1.0 Ga) convergent orogen in southern Laurentia, its extensions to Australia and Baltica, and implications for refining Rodinia , 2001 .

[116]  R. Powell,et al.  Strain localisation and high-grade metamorphism at Broken Hill, Australia: a view from the Southern Cross area , 2001 .

[117]  E. Sawyer Melt segregation in the continental crust: distribution and movement of melt in anatectic rocks , 2001 .

[118]  I. Buick,et al.  Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia , 2001 .

[119]  I. Buick,et al.  Tectonic evolution of the Reynolds-Anmatjira Ranges: a case study in terrain reworking from the Arunta Inlier, central Australia , 2001, Geological Society, London, Special Publications.

[120]  Worley,et al.  The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 , 2000 .

[121]  S. Larson,et al.  Growth-related 1.85–1.55 Ga magmatism in the Baltic Shield; a review addressing the tectonic characteristics of Svecofennian, TIB 1-related, and Gothian events , 2000 .

[122]  J. Domagala,et al.  Chronostratigraphic basin framework for Palaeoproterozoic rocks (1730–1575 Ma) in northern Australia and implications for base‐metal mineralisation , 2000 .

[123]  W. Preiss The Adelaide Geosyncline of South Australia and its significance in Neoproterozoic continental reconstruction , 2000 .

[124]  M. Sandiford,et al.  Geochemistry and geochronology of the Rathjen Gneiss: Implications for the early tectonic evolution of the Delamerian Orogen , 1999 .

[125]  R. Tosdal,et al.  Mesoproterozoic rapakivi granites of the Rondonia Tin Province, southwestern border of the Amazonian craton, Brazil-I. Reconnaissance U-Pb geochronology and regional implications , 1999 .

[126]  M. Kohn,et al.  P -T paths from anatectic pelites , 1999 .

[127]  T. Brewer,et al.  Contrasting magmatic arcs in the Palaeoproterozoic of the south-western Baltic Shield , 1998 .

[128]  K. Karlstrom,et al.  Persistent influence of Proterozoic accretionary boundaries in the tectonic evolution of southwestern North America Interaction of cratonic grain and mantle modification events , 1998 .

[129]  I. Buick,et al.  The retrograde P–T–t path for low‐pressure granulites from the Reynolds Range, central Australia: petrological constraints and implications for low‐P/high‐T metamorphism , 1998 .

[130]  R. Page,et al.  Aspects of geochronology and crustal evolution in the Eastern Fold Belt, Mt Isa Inlier∗ , 1998 .

[131]  R. Blewett U_Pb zircon and Sm_Nd geochronology of the Mesoproterozoic of North Queensland: implications for a Rodinian connection with the Belt supergroup of North America , 1998 .

[132]  Roger Powell,et al.  An internally consistent thermodynamic data set for phases of petrological interest , 1998 .

[133]  E. Paul The geometry and controls on basement-involved deformation in the Adelaide Fold Belt, South Australia / by Eike Gunther Paul. , 1998 .

[134]  C. Gower,et al.  The Gothian and Labradorian orogens: Variations in accretionary tectonism along a late Paleoproterozoic Laurentia‐Baltica margin , 1997 .

[135]  B. Giletti,et al.  Lead diffusion in monazite , 1997 .

[136]  O. Rämö,et al.  Radiogenic isotopes of the Estonian and Latvian rapakivi granite suites: new data from the concealed Precambrian of the East European Craton , 1996 .

[137]  J. Vry,et al.  SHRIMP II dating of zircons and monazites: reassessing the timing of high‐grade metamorphism and fluid flow in the Reynolds Range, northern Arunta Block, Australia , 1996 .

[138]  R. Vernon Problems with inferring P–T–t paths in low‐P granulite facies rocks , 1996 .

[139]  K. Stüwe Thermal buffering effects at the solidus. Implications for the equilibration of partially melted metamorphic rocks , 1995 .

[140]  M. Idnurm,et al.  Paleoproterozoic-Neoproterozoic North America–Australia link: New evidence from paleomagnetism , 1995 .

[141]  A. Camacho,et al.  Some isotopic constraints on the evolution of the granulite and upper amphibolite facies terranes in the eastern Musgrave Block, central Australia , 1995 .

[142]  B. Krapež,et al.  South Australian record of a Rodinian epicontinental basin and its mid-neoproterozoic breakup (∼700 Ma) to form the Palaeo-Pacific Ocean , 1994 .

[143]  R. Page,et al.  Felsic metavolcanic rocks related to the Broken Hill Pb-Zn-Ag orebody, Australia; geology, depositional age, and timing of high-grade metamorphism , 1992 .

[144]  R. Berry,et al.  Internally consistent gahnitic spinel-cordierite-garnet equilibria in the FMASHZn system: geothermobarometry and applications , 1992 .

[145]  M. J. Rubenach Proterozoic low‐pressure/high‐temperature metamorphism and an anticlockwise P–T–t path for the Hazeldene area, Mount Isa Inlier, Queensland, Australia , 1992 .

[146]  J. Reinhardt Low-pressure, high-temperature metamorphism in a compressional tectonic setting: Mary Kathleen Fold Belt, northeastern Australia , 1992, Geological Magazine.

[147]  C. Steinhardt The microstructural anatomy of a major thrust zone on Fleurieu Peninsula, South Australia , 1991 .

[148]  M. Walter The Adelaide Geosyncline: Late proterozoic stratigraphy, sedimentation, palaeontology and tectonics , 1991 .

[149]  R. Parrish U–Pb dating of monazite and its application to geological problems , 1990 .

[150]  E. Leitch The Adelaide Geosyncline: Late proterozoic stratigraphy, sedimentation, palaeontology and tectonics , 1990 .

[151]  C. Pin,et al.  Granites, Granulites, and Crustal Differentiation , 1990 .

[152]  M. J. Rubenach,et al.  Temperature-time relationships across metamorphic zones: evidence from porphyroblast-matrix relationships in progressively deformed metapelites , 1989 .

[153]  J. Bain,et al.  Proterozoic stratigraphy and tectonic history of the Georgetown Inlier, northeastern Queensland , 1988 .

[154]  K. Ludwig,et al.  Refined Proterozoic evolution of the Gawler Craton, South Australia, through U-Pb zircon geochronology , 1988 .

[155]  T. Harrison,et al.  Identification of inherited radiogenic Pb in monazite and its implications for U–Pb systematics , 1988, Nature.

[156]  P. Crowhurst The geology, petrology and geochemistry of the Proterozoic inlier, south of Myponga, Fleurieu Peninsula, South Australia , 1988 .

[157]  R. Powell,et al.  Metamorphism in the Olary Block, South Australia: compression with cooling in a Proterozoic fold belt , 1987 .

[158]  T. Holland,et al.  The significance of cordierite-hypersthene assemblages from the Beitbridge region of the central Limpopo Belt; evidence for rapid decompression in the Archean? , 1984 .

[159]  N. Harris The application of spinel-bearing metapelites to P/T determinations: An example from South India , 1981 .

[160]  L. P. Black,et al.  Geochronology of discrete structural-metamorphic events in a multiply deformed precambrian terrain , 1979 .

[161]  J. E. Heaslip Review of the geology of the Mt Magnificent area , 1972 .