Morphologies and material properties of ZnO nanotubes, ZnO/ZnS core-shell nanorods, and ZnO/ZnS core-shell nanotubes

[1]  Yan Li,et al.  Enhanced NO2 sensing performance of ZnO@ZnS core-shell structure fabricated using a solution chemical method , 2021 .

[2]  L. Lozzi,et al.  ZnO thin films containing aliovalent ions for NO2 gas sensor activated by visible light , 2021 .

[3]  Jung Han,et al.  Dual UV Light and CO Gas Sensing Properties of ZnO/ZnS Hybrid Nanocomposite , 2021, IEEE Sensors Journal.

[4]  A. Sabareeswaran,et al.  In vitro and In vivo toxicity analysis of Zinc Selenium/Zinc Sulfide (ZnSe/ZnS) Quantum dots. , 2020, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[5]  Y. S. Wu,et al.  Morphological, Material, and Optical Properties of ZnO/ZnS/CNTs Nanocomposites on SiO2 Substrate , 2020, Nanomaterials.

[6]  Y. S. Wu,et al.  Morphological and crystalline analysis of ZnO/ZnS nanostructures on porous silicon substrate , 2020 .

[7]  Xiaofei Zhao,et al.  Efficient Near‐Infrared Light‐Emitting Diodes based on In(Zn)As–In(Zn)P–GaP–ZnS Quantum Dots , 2019, Advanced Functional Materials.

[8]  T. Chou,et al.  ZnO/ZnS core-shell nanostructures for hydrogen gas sensing performances , 2019, Ceramics International.

[9]  Xin Gao,et al.  Passivation Effect on ZnO Films by SF6 Plasma Treatment , 2019, Crystals.

[10]  H. Yanagi,et al.  Enhanced charge transport in Al-doped ZnO nanotubes designed via simultaneous etching and Al doping of H2O-oxidized ZnO nanorods for solar cell applications , 2019, Journal of Materials Chemistry C.

[11]  J. Rodríguez‐Hernández,et al.  A novel two-step route for synthesizing pure Ta2O5 nanoparticles with enhanced photocatalytic activity , 2019, Ceramics International.

[12]  S. Erwin,et al.  Synthesis of super bright indium phosphide colloidal quantum dots through thermal diffusion , 2019, Communications Chemistry.

[13]  Jaegab Lee,et al.  Facile synthesis and electrochemical properties of carbon-coated ZnO nanotubes for high-rate lithium storage , 2018, Ceramics International.

[14]  Jing-Jenn Lin,et al.  Incorporation of carbon nanotube and graphene in ZnO nanorods-based hydrogen gas sensor , 2018, Ceramics International.

[15]  Chin-Chi Cheng,et al.  Fabrication and characterization of distinctive ZnO/ZnS core–shell structures on silicon substrates via a hydrothermal method , 2018, RSC advances.

[16]  Zhengguo Zhang,et al.  A novel process for preparing molten salt/expanded graphite composite phase change blocks with good uniformity and small volume expansion , 2017 .

[17]  Areej Shahid,et al.  Growth Method-Dependent and Defect Density-Oriented Structural, Optical, Conductive, and Physical Properties of Solution-Grown ZnO Nanostructures , 2017, Nanomaterials.

[18]  R. Sarwar,et al.  Transition Between ZnO Nanorods and ZnO Nanotubes with Their Antithetical Properties , 2016 .

[19]  B. Marí,et al.  Photoluminescent properties of electrochemically synthetized ZnO nanotubes , 2016 .

[20]  Oomman K Varghese,et al.  Rapid Growth of Zinc Oxide Nanotube-Nanowire Hybrid Architectures and Their Use in Breast Cancer-Related Volatile Organics Detection. , 2016, Nano letters.

[21]  Zhuangde Jiang,et al.  Effects of etching parameters on ZnO nanotubes evolved from hydrothermally synthesized ZnO nanorods , 2016 .

[22]  M. Godlewski,et al.  New efficient solar cell structures based on zinc oxide nanorods , 2015 .

[23]  T. Kang,et al.  Single ZnO nanocactus gas sensor formed by etching of ZnO nanorod. , 2015, Nanoscale.

[24]  M. Kolahdouz,et al.  Low temperature carving of ZnO nanorods into nanotubes for dye-sensitized solar cell application , 2015 .

[25]  R. Yakimova,et al.  A detailed optical investigation of ZnO@ZnS core–shell nanoparticles and their photocatalytic activity at different pH values , 2015 .

[26]  F. Zheng,et al.  One-step electrodeposition of single-crystal ZnO nanotube arrays and their optical properties , 2014 .

[27]  Biju Mani Rajbongshi,et al.  ZnO and Co-ZnO nanorods—Complementary role of oxygen vacancy in photocatalytic activity of under UV and visible radiation flux , 2014 .

[28]  Ke Wang,et al.  Synthesis of mesoporous multiwall ZnO nanotubes by replicating silk and application for enzymatic biosensor. , 2013, Biosensors & bioelectronics.

[29]  A. Kushwaha,et al.  Hydrogen-incorporated ZnO nanowire films: stable and high electrical conductivity , 2013 .

[30]  Tao Liu,et al.  Visible and near-infrared planar waveguide structure of polycrystalline zinc sulfide from C ions implantation. , 2013, Optics express.

[31]  M. Hussein,et al.  Visible Light-Induced Degradation of Methylene Blue in the Presence of Photocatalytic ZnS and CdS Nanoparticles , 2012, International journal of molecular sciences.

[32]  Y. Lin,et al.  A two-step route to synthesize highly oriented ZnO nanotube arrays , 2012 .

[33]  Tae Whan Kim,et al.  Effect of Potassium Chloride Concentration on the Structural and Optical Properties of ZnO Nanorods Grown on Glass Substrates Coated with Indium Tin Oxide Film , 2012 .

[34]  Xiaomin Li,et al.  Investigation on chemical etching process of ZnO nanorods toward nanotubes , 2009 .

[35]  Juan Bisquert,et al.  Electron transport in dye-sensitized solar cells based on ZnO nanotubes: evidence for highly efficient charge collection and exceptionally rapid dynamics. , 2009, The journal of physical chemistry. A.

[36]  Shoou-Jinn Chang,et al.  ZnO Nanotube Ethanol Gas Sensors , 2008 .

[37]  Daniela Manno,et al.  WO3 gas sensors prepared by thermal oxidization of tungsten , 2008 .

[38]  Chun-Wei Chen,et al.  Near-ultraviolet photodetector based on hybrid polymer/zinc oxide nanorods by low-temperature solution processes , 2008 .

[39]  F. Moztarzadeh,et al.  Synthesis of zinc sulfide semiconductor nanoparticles by coprecipitation method for biological diagnostics , 2007 .

[40]  S. Hashimoto,et al.  Enhancement of band-edge photoluminescence of bulk ZnO single crystals coated with alkali halide , 2003 .

[41]  S. Basu,et al.  Improved zinc oxide film for gas sensor applications , 2002 .

[42]  M. Haase,et al.  Strongly luminescent InP/ZnS core-shell nanoparticles. , 2001, ChemPhysChem.