An Exact Asymptotically Efficient Confidence Bound for Reliability in the Case of the Weibull Distribution
暂无分享,去创建一个
[1] W. Weibull,et al. The phenomenon of rupture in solids , 1939 .
[2] A. Basu. Estimates of Reliability for Some Distributions Useful in Life Testing , 1964 .
[3] R. Plackett. Linear Estimation from Censored Data , 1958 .
[4] J. L. Jaech. Estimation of Weibull Distribution Shape Parameter When no More than Two Failures Occur per Lot , 1964 .
[5] W. Weibull. A statistical theory of the strength of materials , 1939 .
[6] S. Dubey. Asymptotic Properties of Several Estimators of Weibull Parameters , 1965 .
[7] A. S. Qureishi,et al. The Discximination Between Two Weibull Processes , 1964 .
[8] J. D. Alanen,et al. Sampling Inspection Plans for Discriminating Between Two Weibull Processes , 1965 .
[9] J. Jung. On linear estimates defined by a continuous weight function , 1956 .
[10] On Precedence Life Testing , 1965 .
[11] John H. K. Kao. Computer Methods for Estimating Weibull Parameters in Reliability Studies , 1958 .
[12] F. David,et al. Statistical Estimates and Transformed Beta-Variables. , 1960 .
[13] L. Weiss. On the asymptotic distribution of an estimate of a scale parameter , 1963 .
[14] A. Cohen,et al. Maximum Likelihood Estimation in the Weibull Distribution Based On Complete and On Censored Samples , 1965 .
[15] Albert H. Moore,et al. POINT AND INTERVAL ESTIMATORS, BASED ON M ORDER STATISTICS, FOR THE SCALE PARAMETER OF A WEIBULL POPULATION WITH KNOWN SHAPE PARAMETER , 1965 .
[16] Max Halperin,et al. Maximum Likelihood Estimation in Truncated Samples , 1952 .
[17] A. E. Sarhan,et al. Contributions to order statistics , 1964 .
[18] Albert H. Moore,et al. Maximum-Likelihood Estimation of the Parameters of Gamma and Weibull Populations from Complete and from Censored Samples , 1965 .
[19] W. Weibull. A Statistical Distribution Function of Wide Applicability , 1951 .
[20] J. T. Webster,et al. A Method for Discriminating Between Failure Density Functions Used In Reliability Predictions , 1965 .