A reappraisal of what we have learnt during three decades of computer simulations on water

Due to its ubiquity in our environment (near or far remote) water is the most investigated liquid of the literature. Since the advent of molecular simulations in the sixties the key point of the theoretical studies on water is the description of its force field. During the last three decades a cohort of model potentials have been published and tested by computer simulations. Our purpose is to appraise what have been accomplished during all these years and what deserves to be improved. In addition we attempt to give some guidance for future investigations.

[1]  P. Jedlovszky,et al.  Temperature dependence of thermodynamic properties of a polarizable potential model of water , 1999 .

[2]  W. L. Jorgensen,et al.  Temperature dependence of TIP3P, SPC, and TIP4P water from NPT Monte Carlo simulations: Seeking temperatures of maximum density , 1998 .

[3]  David van der Spoel,et al.  Molecular Dynamics Simulations of Water with Novel Shell-Model Potentials , 2001 .

[4]  B. Berne,et al.  Free Energy of the Hydrophobic Interaction from Molecular Dynamics Simulations: The Effects of Solute and Solvent Polarizability , 1997 .

[5]  H. -. Kim,et al.  Generalized molecular mechanics including quantum electronic structure variation of polar solvents. I. Theoretical formulation via a truncated adiabatic basis set description , 1998 .

[6]  Per Linse,et al.  Molecular dynamics simulations of polarizable water at different boundary conditions , 2000 .

[7]  B. Guillot,et al.  A computer simulation study of the liquid–vapor coexistence curve of water , 1993 .

[8]  Galli,et al.  Water under pressure , 2000, Physical review letters.

[9]  Starr,et al.  Free energy surface of supercooled water , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  A. Haymet,et al.  Structure and properties of the CF1 central force model of water: Integral equation theory , 1995 .

[11]  M. Gordon,et al.  Understanding the Hydrogen Bond Using Quantum Chemistry , 1996 .

[12]  A. D. Mackie,et al.  Liquid vapor equilibria for an ab initio model for water , 1999 .

[13]  Milton Medeiros,et al.  Gibbs ensemble Monte Carlo simulation of the properties of water with a fluctuating charges model , 1997 .

[14]  Frank H. Stillinger,et al.  Revised central force potentials for water , 1978 .

[15]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[16]  G. Karlstroem,et al.  New intermolecular energy calculation scheme: applications to potential surface and liquid properties of water , 1990 .

[17]  Hannes Jónsson,et al.  Multipole moments of water molecules in clusters and ice Ih from first principles calculations , 1999 .

[18]  Jan B. F. N. Engberts,et al.  Hydrophobic Effects. Opinions and Facts , 1993 .

[19]  G. G. Hall,et al.  Electrostatic water models , 1992 .

[20]  Kenneth M. Merz,et al.  The Role of Polarization and Charge Transfer in the Solvation of Biomolecules , 1999 .

[21]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[22]  Rahman,et al.  Molecular-dynamics study of atomic motions in water. , 1985, Physical review. B, Condensed matter.

[23]  Athanassios Z. Panagiotopoulos,et al.  A Fixed Point Charge Model for Water Optimized to the Vapor−Liquid Coexistence Properties , 1998 .

[24]  A. Soper,et al.  Water above its boiling point: Study of the temperature and density dependence of the partial pair correlation functions. I. Neutron diffraction experiment , 1994 .

[25]  J. E. Quinn,et al.  Cooperative effects in simulated water , 1979, Nature.

[26]  Gerhard Hummer,et al.  New perspectives on hydrophobic effects , 2000 .

[27]  B. Alder,et al.  Phase Transition for a Hard Sphere System , 1957 .

[28]  Giorgina Corongiu,et al.  Molecular dynamics simulations of liquid water using the NCC ab initio potential , 1990 .

[29]  E. Clementi,et al.  Study of the structure of molecular complexes. XII. Structure of liquid water obtained by Monte Carlo simulation with the Hartree–Fock potential corrected by inclusion of dispersion forces , 1975 .

[30]  R. Mountain Molecular dynamics investigation of expanded water at elevated temperatures , 1989 .

[31]  Alan K. Soper,et al.  A new determination of the structure of water at 25°C , 1986 .

[32]  Steven J. Stuart,et al.  Effects of Polarizability on the Hydration of the Chloride Ion , 1996 .

[33]  F. Stillinger,et al.  Study of a central force model for liquid water by molecular dynamics , 1975 .

[34]  R. Rey Isochoric Temperature Differentials from the Computed Density of the Extended Simple Point Charge Model of Water , 1999 .

[35]  M. Alfredsson,et al.  THE USE OF A POINT POLARIZABLE DIPOLE IN INTERMOLECULAR POTENTIALS FOR WATER , 1998 .

[36]  E. D. Isaacs,et al.  Covalency of the Hydrogen Bond in Ice: A Direct X-Ray Measurement , 1999 .

[37]  W. L. Jorgensen Quantum and statistical mechanical studies of liquids. 10. Transferable intermolecular potential functions for water, alcohols, and ethers. Application to liquid water , 2002 .

[38]  Stefan Boresch,et al.  RATIONALIZATION OF THE DIELECTRIC PROPERTIES OF COMMON THREE-SITE WATER MODELS IN TERMS OF THEIR FORCE FIELD PARAMETERS , 1998 .

[39]  F. Stillinger,et al.  Molecular Dynamics Study of Liquid Water , 1971 .

[40]  Mark S. Gordon,et al.  An effective fragment method for modeling solvent effects in quantum mechanical calculations , 1996 .

[41]  Kazimierz Krynicki,et al.  Pressure and temperature dependence of self-diffusion in water , 1978 .

[42]  G. Corongiu Molecular dynamics simulation for liquid water using a polarizable and flexible potential , 1992 .

[43]  A. Stone,et al.  Towards an accurate intermolecular potential for water , 1992 .

[44]  P. Kusalik,et al.  The multipole polarizabilities and hyperpolarizabilities of the water molecule in liquid state: an ab initio study , 2001 .

[45]  O. Matsuoka,et al.  CI study of the water dimer potential surface , 1976 .

[46]  G. Tóth,et al.  Comment on “A new algorithm for reverse Monte Carlo simulations” [J. Chem. Phys. 109, 2624 (1998)] , 1999 .

[47]  Peter T. Cummings,et al.  Engineering a simple polarizable model for the molecular simulation of water applicable over wide ranges of state conditions , 1996 .

[48]  M. Parrinello,et al.  AB INITIO PATH INTEGRAL MOLECULAR DYNAMICS : BASIC IDEAS , 1996 .

[49]  P. Clancy,et al.  EXISTENCE OF A DENSITY MAXIMUM IN EXTENDED SIMPLE POINT CHARGE WATER , 1994 .

[50]  A. Geiger,et al.  Simulation Study on the Diffusive Motion in Deeply Supercooled Water , 1999 .

[51]  Michael W. Mahoney,et al.  A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions , 2000 .

[52]  Steven J. Stuart,et al.  Dynamical fluctuating charge force fields: Application to liquid water , 1994 .

[53]  Håkan Wennerström,et al.  Role of hydration and water structure in biological and colloidal interactions , 1996, Nature.

[54]  P. Cummings,et al.  RESEARCH NOTE Calculation of the vapour-liquid coexistence curve for a fluctuating point charge water model , 1999 .

[55]  P. Åstrand,et al.  A comparison of effective and polarizable intermolecular potentials in simulations: liquid water as a test case , 2001 .

[56]  Claude Millot,et al.  Revised Anisotropic Site Potentials for the Water Dimer and Calculated Properties , 1998 .

[57]  G. Tóth,et al.  Molecular dynamics analog of the reverse Monte Carlo method , 2001 .

[58]  P. Åstrand,et al.  LIQUID DENSITIES AND STRUCTURAL PROPERTIES OF MOLECULAR MODELS OF WATER , 1995 .

[59]  Michiel Sprik,et al.  Ab initio molecular dynamics simulation of liquid water: Comparison of three gradient‐corrected density functionals , 1996 .

[60]  H. -. Kim,et al.  Molecular dynamics simulation study of water near critical conditions. II. Dynamics and spectroscopy , 1999 .

[61]  F. Stillinger,et al.  Central-force model for liquid water , 1975 .

[62]  R. Saykally,et al.  Fully coupled six-dimensional calculations of the water dimer vibration-rotation-tunneling states with split Wigner pseudospectral approach. II. Improvements and tests of additional potentials , 1999 .

[63]  Mark S. Gordon,et al.  An approximate formula for the intermolecular Pauli repulsion between closed shell molecules , 1996 .

[64]  G. W. Robinson,et al.  A flexible/polarizable simple point charge water model , 1991 .

[65]  James R. Rustad,et al.  A polarizable, dissociating molecular dynamics model for liquid water , 1993 .

[66]  Wilson,et al.  Voids in the H-bonded network of water and their manifestation in the structure factor , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[67]  D. Beysens,et al.  THE STRUCTURE OF SUPERCRITICAL HEAVY WATER AS STUDIED BY NEUTRON DIFFRACTION , 1997 .

[68]  L. Dang,et al.  Importance of Polarization Effects in Modeling the Hydrogen Bond in Water Using Classical Molecular Dynamics Techniques , 1998 .

[69]  Trygve Helgaker,et al.  ATOMIC CHARGES OF THE WATER MOLECULE AND THE WATER DIMER , 1998 .

[70]  Noriyuki Yoshii,et al.  A molecular-dynamics study of the equation of state of water using a fluctuating-charge model , 2000 .

[71]  J. Finney The water molecule and its interactions: the interaction between theory, modelling, and experiment , 2001 .

[72]  W. Hook,et al.  Condensed phase isotope effects (especially vapor pressure isotope effects) , 1974 .

[73]  Toshio Yamaguchi,et al.  Neutron-diffraction investigation of the intramolecular structure of a water molecule in the liquid phase at high temperatures , 1991 .

[74]  Peter G. Wolynes,et al.  Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids , 1981 .

[75]  D. Zichi,et al.  Generalized molecular mechanics including quantum electronic structure variation of polar solvents. II. A molecular dynamics simulation study of water , 1998 .

[76]  Application of a new reverse Monte Carlo algorithm to polyatomic molecular systems. I. Liquid water , 2001 .

[77]  A. Soper,et al.  The interatomic structure of water at supercritical temperatures , 1993, Nature.

[78]  A. Soper Orientational correlation function for molecular liquids: The case of liquid water , 1994 .

[79]  B. Guillot,et al.  Quantum effects in simulated water by the Feynman–Hibbs approach , 1998 .

[80]  R. Saykally,et al.  Spectroscopic determination of the water pair potential. , 1999, Science.

[81]  Stanley,et al.  Spinodal of liquid water. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[82]  H. -. Kim,et al.  Spectroscopic and dielectric properties of liquid water: A molecular dynamics simulation study , 1998 .

[83]  M. Holz,et al.  Isotope effect on the translational and rotational motion in liquid water and ammonia , 2001 .

[84]  Greg L. Hura,et al.  A high-quality x-ray scattering experiment on liquid water at ambient conditions , 2000 .

[85]  R. Mountain Voids and clusters in expanded water , 1999 .

[86]  A. Brodsky Is there predictive value in water computer simulations , 1996 .

[87]  H. Jónsson,et al.  Molecular multipole moments of water molecules in ice Ih , 1998 .

[88]  Herman J. C. Berendsen,et al.  A mobile charge densities in harmonic oscillators (MCDHO) molecular model for numerical simulations: The water-water interaction , 2000 .

[89]  Jung,et al.  Chemistry in Supercritical Water. , 1999, Angewandte Chemie.

[90]  K. Heinzinger,et al.  An improved potential for non-rigid water molecules in the liquid phase , 1983 .

[91]  D. J. Diestler,et al.  Isothermal–isobaric molecular dynamics simulation of liquid water , 1990 .

[92]  Lester Haar Nbs/Nrc Steam Tables , 1984 .

[93]  H. D. Cochran,et al.  Interplay between molecular simulation and neutron scattering in developing new insights into the structure of water , 1998 .

[94]  A. Panagiotopoulos Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble , 1987 .

[95]  P. A. Egelstaff,et al.  The temperature dependence of the structure of water , 1983 .

[96]  F. Stillinger,et al.  An orientational perturbation theory for pure liquid water , 1993 .

[97]  Hideki Tanaka,et al.  The melting temperature of proton-disordered hexagonal ice: A computer simulation of 4-site transferable intermolecular potential model of water , 2000 .

[98]  John P. Brodholt,et al.  Analysis of the hydrogen-bonded structure of water from ambient to supercritical conditions , 1998 .

[99]  I. Ortega‐Blake,et al.  Nonadditivity in an analytical intermolecular potential: The water–water interaction , 1990 .

[100]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[101]  Daniel Borgis,et al.  A semiempirical quantum polarization model for water , 1995 .

[102]  Peter T. Cummings,et al.  Molecular simulation of water along the liquid–vapor coexistence curve from 25 °C to the critical point , 1990 .

[103]  D. Theodorou,et al.  Molecular Simulation of Phase Equilibria for Water−Methane and Water−Ethane Mixtures , 1998 .

[104]  F. Stillinger,et al.  Improved simulation of liquid water by molecular dynamics , 1974 .

[105]  Kumagai Naoki,et al.  An Interatomic Potential Model for H2O: Applications to Water and Ice Polymorphs , 1994 .

[106]  Georgios C. Boulougouris,et al.  Engineering a Molecular Model for Water Phase Equilibrium over a Wide Temperature Range , 1998 .

[107]  P. Rossky,et al.  Model dependence of quantum isotope effects in liquid water , 1991 .

[108]  P. Clancy,et al.  Phase equilibria in extended simple point charge ice‐water systems , 1995 .

[109]  Peter G. Kusalik,et al.  The Spatial Structure in Liquid Water , 1994, Science.

[110]  Michael L. Klein,et al.  Intermolecular potential functions and the properties of water , 1982 .

[111]  E. Clementi,et al.  Study of the structure of molecular complexes. VI. Dimers and small clusters of water molecules in the Hartree‐Fock approximation , 1974 .

[112]  D. C. Clary,et al.  The Water Dipole Moment in Water Clusters , 1997, Science.

[113]  Anders Wallqvist,et al.  A molecular dynamics study of polarizable water , 1989 .

[114]  Sow-Hsin Chen,et al.  Isochoric temperature differential of the x-ray structure factor and structural rearrangements in low-temperature heavy water , 1983 .

[115]  E. Clementi,et al.  Study of the structure of molecular complexes. XIII. Monte Carlo simulation of liquid water with a configuration interaction pair potential , 1976 .

[116]  Frank H. Stillinger,et al.  Polarization model for water and its ionic dissociation products , 1978 .

[117]  M. Parrinello,et al.  Water at supercritical conditions: A first principles study , 2001 .

[118]  G. W. Neilson,et al.  The effect of pressure on the structure of light and heavy water , 1982 .

[119]  G. Pollack,et al.  Why Gases Dissolve in Liquids , 1991, Science.

[120]  Alan K. Soper,et al.  Site–site pair correlation functions of water from 25 to 400 °C: Revised analysis of new and old diffraction data , 1997 .

[121]  W. L. Jorgensen Revised TIPS for simulations of liquid water and aqueous solutions , 1982 .

[122]  Terry P. Lybrand,et al.  A new water potential including polarization: Application to gas‐phase, liquid, and crystal properties of water , 1990 .

[123]  J. Korchowiec,et al.  New energy partitioning scheme based on the self-consistent charge and configuration method for subsystems: Application to water dimer system , 2000 .

[124]  H. -. Kim,et al.  Molecular dynamics simulation study of water near critical conditions. I. Structure and solvation free energetics , 1999 .

[125]  B. Berne,et al.  Combined fluctuating charge and polarizable dipole models: Application to a five-site water potential function , 2001 .

[126]  Michael L. Klein,et al.  Effective pair potentials and the properties of water , 1989 .

[127]  Bruce J. Berne,et al.  Dynamical Fluctuating Charge Force Fields: The Aqueous Solvation of Amides , 1996 .

[128]  W. Hubbard Neptune's Deep Chemistry , 1997, Science.

[129]  Alan K. Soper,et al.  Empirical potential Monte Carlo simulation of fluid structure , 1996 .

[130]  R. Mountain Dielectric constant of polarizable water at elevated temperatures , 1996 .

[131]  J. A. Barker,et al.  Surface structure and surface tension: perturbation theory and Monte Carlo calculation , 1974 .

[132]  A. Morita,et al.  An ab initio analysis of medium perturbation on molecular polarizabilities , 1999 .

[133]  J. V. Eerden,et al.  Free energy calculations on systems of rigid molecules: An application to the TIP4P model of H2O , 1999 .

[134]  L. Dang,et al.  The nonadditive intermolecular potential for water revised , 1992 .

[135]  B. Silvi,et al.  Dipole moment of the water molecule in the condensed phase: a periodic Hartree-Fock estimate , 1995 .

[136]  L. Pusztai Partial pair correlation functions of liquid water , 1999 .

[137]  Michiel Sprik,et al.  New generalized gradient approximation functionals , 2000 .

[138]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[139]  J. Ilja Siepmann,et al.  Development of Polarizable Water Force Fields for Phase Equilibrium Calculations , 2000 .

[140]  Y. Guissani,et al.  How to build a better pair potential for water , 2001 .

[141]  H. Berendsen,et al.  A systematic study of water models for molecular simulation: Derivation of water models optimized for use with a reaction field , 1998 .

[142]  A. R. H. Goodwin,et al.  A Database for the Static Dielectric Constant of Water and Steam , 1995 .

[143]  David E. Smith,et al.  Computer simulations of NaCl association in polarizable water , 1994 .

[144]  Sotiris S. Xantheas,et al.  AB INITIO STUDIES OF CYCLIC WATER CLUSTERS (H2O)N, N=1-6. III: COMPARISON OF DENSITY FUNCTIONAL WITH MP2 RESULTS , 1995 .

[145]  Y. Guissani,et al.  A computer simulation study of the temperature dependence of the hydrophobic hydration , 1993 .

[146]  M. Spackman Accurate prediction of static dipole polarizabilities with moderately sized basis sets , 1989 .

[147]  H. Stanley,et al.  Cooperative molecular motions in water: The liquid-liquid critical point hypothesis , 1997 .

[148]  P. Wolynes,et al.  Convenient and accurate discretized path integral methods for equilibrium quantum mechanical calculations , 1981 .

[149]  Kari Laasonen,et al.  ‘‘Ab initio’’ liquid water , 1993 .

[150]  F. Stillinger,et al.  Study of the water octamer using the polarization model of molecular interactions , 1980 .

[151]  William L. Jorgensen,et al.  OPLS ALL-ATOM MODEL FOR AMINES : RESOLUTION OF THE AMINE HYDRATION PROBLEM , 1999 .

[152]  D. Thirumalai,et al.  Ergodic measures for the simulation of dialectric properties of water , 1991 .

[153]  H. Eugene Stanley,et al.  Liquid-Liquid Phase Transition: Evidence from Simulations , 1997 .

[154]  I. M. Svishchev,et al.  PHASE COEXISTENCE PROPERTIES FOR THE POLARIZABLE POINT CHARGE MODEL OF WATER AND THE EFFECTS OF APPLIED ELECTRIC FIELD , 1999 .

[155]  Michiel Sprik,et al.  Hydrogen bonding and the static dielectric constant in liquid water , 1991 .

[156]  Aaron Lefohn,et al.  A Multistate Empirical Valence Bond Approach to a Polarizable and Flexible Water Model , 2001 .

[157]  Michael Levitt,et al.  Calibration and Testing of a Water Model for Simulation of the Molecular Dynamics of Proteins and Nucleic Acids in Solution , 1997 .

[158]  B. Guillot A molecular dynamics study of the far infrared spectrum of liquid water , 1991 .

[159]  Kiyoyuki Terakura,et al.  Hydrogen bonding and dipole moment of water at supercritical conditions: a first-principles molecular dynamics study. , 2000, Physical review letters.

[160]  Anders Wallqvist,et al.  Path-integral simulation of pure water☆ , 1985 .

[161]  S. Rick Simulations of ice and liquid water over a range of temperatures using the fluctuating charge model , 2001 .

[162]  R. J. Boyd,et al.  Polarizable point‐charge model for water: Results under normal and extreme conditions , 1996 .

[163]  Y. Kataoka Studies of liquid water by computer simulations. V. Equation of state of fluid water with Carravetta–Clementi potential , 1987 .

[164]  E. Clementi,et al.  Study of the structure of molecular complexes. IV. The Hartree‐Fock potential for the water dimer and its application to the liquid state , 1973 .

[165]  M. Panhuis,et al.  Distributed polarizability of the water dimer: Field-induced charge transfer along the hydrogen bond , 2001 .

[166]  D. Tildesley,et al.  Molecular dynamics simulation of the orthobaric densities and surface tension of water , 1995 .

[167]  M. Parrinello,et al.  Tunnelling and zero-point motion in high-pressure ice , 1998, Nature.

[168]  Athanassios Z. Panagiotopoulos,et al.  Phase equilibria by simulation in the Gibbs ensemble , 1988 .

[169]  C. Benmore,et al.  Isotopic quantum effects in water structure measured with high energy photon diffraction , 2000 .

[170]  P. G. Hill,et al.  Assessment of Critical Parameter Values for H2O and D2O , 1985 .

[171]  Greg L. Hura,et al.  What can x-ray scattering tell us about the radial distribution functions of water? , 2000 .

[172]  Peter C. Jordan,et al.  Unusual distributed charge models of water's electric potential , 1999 .

[173]  L. Sportelli,et al.  Solvent Isotope Effects on Azurin Thermal Unfolding , 1998 .

[174]  G. C. Tabisz,et al.  Collision- and interaction-induced spectroscopy , 1995 .

[175]  Dean R. Haeffner,et al.  Electron distribution in water , 2000 .

[176]  R. A. Kuharski,et al.  A quantum mechanical study of structure in liquid H2O and D2O , 1985 .

[177]  P. Cummings,et al.  The structure of water from 25∞C to 457∞C: comparison between neutron scattering and molecular simulation , 2000 .

[178]  M. Parrinello,et al.  Compton scattering and the character of the hydrogen bond in ice Ih , 2001 .

[179]  Michele Parrinello,et al.  Structural, electronic, and bonding properties of liquid water from first principles , 1999 .

[180]  P. Fowler,et al.  Rotational spectra and structures of van der Waals dimers of Ar with a series of fluorocarbons: Ar⋅⋅⋅CH2CHF, Ar⋅⋅⋅CH2CF2, and Ar⋅⋅⋅CHFCF2 , 1991 .

[181]  J. S. Rowlinson,et al.  The lattice energy of ice and the second virial coefficient of water vapour , 1951 .

[182]  Peter C. Jordan,et al.  Polarizability effects in a four‐charge model for water , 1992 .

[183]  Lie,et al.  Molecular-dynamics simulation of liquid water with an ab initio flexible water-water interaction potential. , 1986, Physical review. A, General physics.

[184]  Ruth M. Lynden-Bell,et al.  From hydrophobic to hydrophilic behaviour: A simulation study of solvation entropy and free energy of simple solutes , 1997 .

[185]  W. V. Gunsteren,et al.  Can the density maximum of water be found by computer simulation , 1994 .

[186]  A. Alavi,et al.  The electrostatic properties of water molecules in condensed phases: an ab initio study , 1999 .

[187]  Gregory A. Voth,et al.  A quantum model for water: Equilibrium and dynamical properties , 1997 .

[188]  Jean-Christophe Soetens Marilia T. C. Martins Costa Claude Millot RESEARCH NOTE Static dielectric constant of the polarizable NCC water model , 1998 .

[189]  M. Neumann The dielectric constant of water. Computer simulations with the MCY potential , 1985 .

[190]  Visvaldas Kairys,et al.  Evaluation of the charge penetration energy between non-orthogonal molecular orbitals using the Spherical Gaussian Overlap approximation , 1999 .

[191]  P. M. Halleck,et al.  Natural gas hydrate deposits: a review of in situ properties , 1983 .

[192]  K. Gubbins,et al.  PHASE COEXISTENCE PROPERTIES OF POLARIZABLE WATER MODELS , 1998 .

[193]  H. A. Levy,et al.  Liquid Water: Molecular Correlation Functions from X‐Ray Diffraction , 1971 .