Assembling nanoscale circuits with randomized connections

Molecular electronics are difficult to fabricate with precise positioning of large numbers of devices and their connections. Self-assembly techniques can create such circuits but with some random variation in their connection locations and characteristics. Using simulations, we show how to produce reliable circuits in spite of this variation by adding enough redundant components to pass a sharp threshold in likely circuit correctness. As an example of this approach, we examine a demultiplexer circuit, which is useful for connecting nanoscale circuits with larger conventional circuits.

[1]  Anthony J. G. Hey,et al.  Feynman Lectures on Computation , 1996 .

[2]  Stoddart,et al.  Electronically configurable molecular-based logic gates , 1999, Science.

[3]  David Tabor,et al.  States of matter , 1975, Nature.

[4]  Deli Wang,et al.  Scalability Simulations for Nanomemory Systems Integrated on the Molecular Scale , 2003, Annals of the New York Academy of Sciences.

[5]  André DeHon,et al.  Stochastic assembly of sublithographic nanoscale interfaces , 2003 .

[6]  D. Earn,et al.  A simple model for complex dynamical transitions in epidemics. , 2000, Science.

[7]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[8]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[9]  D. Klein Reputation : studies in the voluntary elicitation of good conduct , 1997 .

[10]  B. Bollobás The evolution of random graphs , 1984 .

[11]  Tad Hogg,et al.  Robust self-assembly using highly designable structures , 1999 .

[12]  Damien Challet,et al.  Optimal combinations of imperfect objects. , 2002, Physical review letters.

[13]  W.S. Stornetta,et al.  Scaling theory for fault stealing algorithms in large systolic arrays , 1990, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[14]  Albert Nijenhuis,et al.  Combinatorial Algorithms for Computers and Calculators , 1978 .

[15]  J. F. Stoddart,et al.  Nanoscale molecular-switch crossbar circuits , 2003 .

[16]  N. Melosh,et al.  Ultrahigh-Density Nanowire Lattices and Circuits , 2003, Science.

[17]  G. Whitesides,et al.  Self-Assembly at All Scales , 2002, Science.

[18]  A. DeHon,et al.  Nonphotolithographic nanoscale memory density prospects , 2005, IEEE Transactions on Nanotechnology.

[19]  J. von Neumann,et al.  Probabilistic Logic and the Synthesis of Reliable Organisms from Unreliable Components , 1956 .

[20]  R. Stanley Williams,et al.  CMOS-like logic in defective, nanoscale crossbars , 2004 .

[21]  Stephen B. Wicker,et al.  Phase transition phenomena in wireless ad hoc networks , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[22]  C. Dekker,et al.  Logic Circuits with Carbon Nanotube Transistors , 2001, Science.

[23]  Tad Hogg,et al.  Controlling smart matter , 1996, cond-mat/9611024.

[24]  Gregory S. Snider,et al.  A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology , 1998 .

[25]  C. Lieber,et al.  Nanowire Crossbar Arrays as Address Decoders for Integrated Nanosystems , 2003, Science.

[26]  T. Cao,et al.  Logic Gates and Computation from Assembled Nanowire Building Blocks , 2001 .

[27]  D. R. Baer,et al.  Self Assembled Nanostructures using Ice Moulds , 2007 .

[28]  Cees Dekker,et al.  Logic circuits with carbon nanotubes , 2002 .

[29]  Warren Robinett,et al.  Defect-tolerant demultiplexers for nano-electronics constructed from error-correcting codes , 2005 .