On Symmetric Eigenproblems Induced by the Bidiagonal SVD

The relatively robust representations (RRR) algorithm is the method of choice to compute highly accurate eigenvector approximations for symmetric tridiagonal matrices. The task of computing singular vector pairs for a bidiagonal matrix $B = U \Sigma V ^T$ is closely connected to the RRR algorithm regarding BTB, BBT, or the Golub--Kahan matrix TGK. Nevertheless, separate application of the RRR algorithm to these matrices leads to poor results regarding either numerical orthogonality or the residual $\| {B}{V} - {U}{\Sigma} \|$. It turns out that the coupling strategy proposed in [B. Grosser and B. Lang, Linear Algebra Appl., 358 (2003), pp. 45--70] resolves this problem. This article provides the corresponding perturbation theory: We compare the eigenvalues of the separate and coupled decompositions and explain why singular vector pairs approximated via couplings are of superior quality.

[1]  I. Dhillon Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigenvector Problem , 1998 .

[2]  J. Demmel,et al.  Computing the Singular Value Decomposition with High Relative Accuracy , 1997 .

[3]  V. I. Kostin,et al.  Computation of an eigenvector of a symmetric tridiagonal matrix , 1985 .

[4]  J. Bunch,et al.  Decomposition of a symmetric matrix , 1976 .

[5]  Inderjit S. Dhillon,et al.  Fernando's solution to Wilkinson's problem: An application of double factorization , 1997 .

[6]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[7]  James Demmel,et al.  The Accurate and Efficient Solution of a Totally Positive Generalized Vandermonde Linear System , 2005, SIAM J. Matrix Anal. Appl..

[8]  S. Godunov Guaranteed Accuracy in Numerical Linear Algebra , 1993 .

[9]  Gene H. Golub,et al.  Matrix computations , 1983 .

[10]  James Demmel,et al.  Jacobi's Method is More Accurate than QR , 1989, SIAM J. Matrix Anal. Appl..

[11]  K. V. Fernando,et al.  Accurately Counting Singular Values of Bidiagonal Matrices and Eigenvalues of Skew-Symmetric Tridiagonal Matrices , 1999, SIAM J. Matrix Anal. Appl..

[12]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[13]  James Demmel,et al.  Accurate Singular Values of Bidiagonal Matrices , 1990, SIAM J. Sci. Comput..

[14]  B. Parlett,et al.  Accurate singular values and differential qd algorithms , 1994 .

[15]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[16]  B. Parlett,et al.  Relatively robust representations of symmetric tridiagonals , 2000 .

[17]  B. Lang,et al.  An O(n2) algorithm for the bidiagonal SVD , 2003 .

[18]  K. V. Fernando On computing an eigenvector of a tridiagonal matrix , 1997 .

[19]  Beresford N. Parlett,et al.  An implementation of the dqds algorithm (positive case) , 2000 .

[20]  Inderjit S. Dhillon,et al.  Orthogonal Eigenvectors and Relative Gaps , 2003, SIAM J. Matrix Anal. Appl..

[21]  H. Rutishauser Der Quotienten-Differenzen-Algorithmus , 1954 .

[22]  C. Loan Computational Frameworks for the Fast Fourier Transform , 1992 .