Spatially Coupled Generalized LDPC Codes: Asymptotic Analysis and Finite Length Scaling

Generalized low-density parity-check (GLDPC) codes are a class of LDPC codes in which the standard single parity check (SPC) constraints are replaced by constraints defined by a linear block code. These stronger constraints typically result in improved error floor performance, due to better minimum distance and trapping set properties, at a cost of some increased decoding complexity. In this paper, we introduce spatially coupled generalized low-density parity-check (SC-GLDPC) codes and present a comprehensive analysis of these codes, including: (1) an iterative decoding threshold analysis of SC-GLDPC code ensembles demonstrating capacity approaching thresholds via the threshold saturation effect; (2) an asymptotic analysis of the minimum distance and free distance properties of SC-GLDPC code ensembles, demonstrating that the ensembles are asymptotically good; and (3) an analysis of the finite-length scaling behavior of both GLDPC block codes and SC-GLDPC codes based on a peeling decoder (PD) operating on a binary erasure channel (BEC). Results are compared to GLDPC block codes, and the advantages and disadvantages of SC-GLDPC codes are discussed.

[1]  Andrea Montanari,et al.  Finite-Length Scaling for Iteratively Decoded LDPC Ensembles , 2004, IEEE Transactions on Information Theory.

[2]  Daniel J. Costello,et al.  Distance Bounds for Periodically Time-Varying and Tail-Biting LDPC Convolutional Codes , 2010, IEEE Transactions on Information Theory.

[3]  Daniel A. Spielman,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[4]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[5]  Andrea Montanari,et al.  Maxwell Construction: The Hidden Bridge Between Iterative and Maximum a Posteriori Decoding , 2005, IEEE Transactions on Information Theory.

[6]  Michael Lentmaier,et al.  Density evolution analysis of Protograph-based braided block codes on the erasure channel , 2010, 2010 International ITG Conference on Source and Channel Coding (SCC).

[7]  G. Solomon,et al.  A Connection Between Block and Convolutional Codes , 1979 .

[8]  Paul H. Siegel,et al.  Windowed Decoding of Protograph-Based LDPC Convolutional Codes Over Erasure Channels , 2010, IEEE Transactions on Information Theory.

[9]  Li Ping,et al.  Generalized Low-Density Parity-Check Codes Based on Hadamard Constraints , 2007, IEEE Transactions on Information Theory.

[10]  J. Thorpe Low-Density Parity-Check (LDPC) Codes Constructed from Protographs , 2003 .

[11]  Alexandre Graell i Amat,et al.  A Refined Scaling Law for Spatially Coupled LDPC Codes Over the Binary Erasure Channel , 2019, 2019 IEEE Information Theory Workshop (ITW).

[12]  Gerhard Fettweis,et al.  On the thresholds of generalized LDPC convolutional codes based on protographs , 2010, 2010 IEEE International Symposium on Information Theory.

[13]  Marco Chiani,et al.  Low-Complexity LDPC Codes with Near-Optimum Performance over the BEC , 2008, 2008 4th Advanced Satellite Mobile Systems.

[14]  Kamil Sh. Zigangirov,et al.  Time-varying periodic convolutional codes with low-density parity-check matrix , 1999, IEEE Trans. Inf. Theory.

[15]  Gerhard Fettweis,et al.  Exact erasure channel density evolution for protograph-based generalized LDPC codes , 2009, 2009 IEEE International Symposium on Information Theory.

[16]  J. Boutros,et al.  Generalized low density (Tanner) codes , 1999, 1999 IEEE International Conference on Communications (Cat. No. 99CH36311).

[17]  Jack K. Wolf,et al.  On Tail Biting Convolutional Codes , 1986, IEEE Trans. Commun..

[18]  William E. Ryan,et al.  Enumerators for Protograph-Based Ensembles of LDPC and Generalized LDPC Codes , 2011, IEEE Transactions on Information Theory.

[19]  Rüdiger L. Urbanke,et al.  Spatially coupled ensembles universally achieve capacity under belief propagation , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[20]  Michael Lentmaier,et al.  Spatially Coupled Generalized LDPC Codes: Introduction and Overview , 2018, 2018 IEEE 10th International Symposium on Turbo Codes & Iterative Information Processing (ISTC).

[21]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[22]  Mark F. Flanagan,et al.  Design of LDPC code ensembles with fast convergence properties , 2014, 2015 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom).

[23]  Pablo M. Olmos,et al.  Analyzing the finite-length performance of generalized LDPC codes , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[24]  Michael Lentmaier,et al.  On generalized low-density parity-check codes based on Hamming component codes , 1999, IEEE Communications Letters.

[25]  Arti D. Yardi,et al.  EBP-GEXIT Charts Over the Binary-Input AWGN Channel for Generalized and Doubly-Generalized LDPC Codes , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[26]  Stephan ten Brink,et al.  Extrinsic information transfer functions: model and erasure channel properties , 2004, IEEE Transactions on Information Theory.

[27]  Pablo M. Olmos,et al.  A Scaling Law to Predict the Finite-Length Performance of Spatially-Coupled LDPC Codes , 2014, IEEE Transactions on Information Theory.

[28]  Michael Lentmaier,et al.  Spatially Coupled LDPC Codes Constructed From Protographs , 2014, IEEE Transactions on Information Theory.

[29]  Michael Lentmaier,et al.  Braided Block Codes , 2009, IEEE Transactions on Information Theory.

[30]  Marc P. C. Fossorier,et al.  Doubly Generalized LDPC Codes , 2006, 2006 IEEE International Symposium on Information Theory.

[31]  William E. Ryan,et al.  Quasi-Cyclic Generalized LDPC Codes With Low Error Floors , 2007, IEEE Trans. Commun..

[32]  David G. M. Mitchell,et al.  Minimum Distance and Trapping Set Analysis of Protograph-Based LDPC Convolutional Codes , 2013, IEEE Transactions on Information Theory.

[33]  Michael Lentmaier,et al.  On the minimum distance of generalized spatially coupled LDPC codes , 2013, 2013 IEEE International Symposium on Information Theory.

[34]  Rudiger Urbanke,et al.  Threshold saturation via spatial coupling: Why convolutional LDPC ensembles perform so well over the BEC , 2010, ISIT.

[35]  Michael Lentmaier,et al.  Iterative Decoding Threshold Analysis for LDPC Convolutional Codes , 2010, IEEE Transactions on Information Theory.