A voting approach to uncover multiple influential spreaders on weighted networks

[1]  Jonathan M. Garibaldi,et al.  A fast community detection method in bipartite networks by distance dynamics , 2018 .

[2]  Richard J. Fitzgerald,et al.  Scientific collaboration networks , 2018 .

[3]  Ping Hu,et al.  Ranking influential nodes in complex networks with structural holes , 2018 .

[4]  Jonathan M. Garibaldi,et al.  An improved game-theoretic approach to uncover overlapping communities , 2017, International Journal of Modern Physics C.

[5]  Q. Guo,et al.  Credit allocation for research institutes , 2017 .

[6]  Qiang Guo,et al.  Identifying multiple influential spreaders via local structural similarity , 2017 .

[7]  Haifeng Zhang,et al.  Identification of influential nodes in complex networks: Method from spreading probability viewpoint , 2017 .

[8]  Wei Wang,et al.  Unification of theoretical approaches for epidemic spreading on complex networks , 2016, Reports on progress in physics. Physical Society.

[9]  Duanbing Chen,et al.  Vital nodes identification in complex networks , 2016, ArXiv.

[10]  Hernán A. Makse,et al.  Collective Influence Algorithm to find influencers via optimal percolation in massively large social media , 2016, Scientific Reports.

[11]  Jianguo Liu,et al.  Identifying multiple influential spreaders in term of the distance-based coloring , 2016 .

[12]  Zhi-Dan Zhao,et al.  Identifying a set of influential spreaders in complex networks , 2016, Scientific Reports.

[13]  Tao Zhou,et al.  The H-index of a network node and its relation to degree and coreness , 2016, Nature Communications.

[14]  Yan Fu,et al.  A Novel Top-k Strategy for Influence Maximization in Complex Networks with Community Structure , 2015, PloS one.

[15]  Shlomo Havlin,et al.  Local structure can identify and quantify influential global spreaders in large scale social networks , 2015, Proceedings of the National Academy of Sciences.

[16]  Hernán A. Makse,et al.  Influence maximization in complex networks through optimal percolation , 2015, Nature.

[17]  Ming Tang,et al.  Improving the accuracy of the k-shell method by removing redundant links: From a perspective of spreading dynamics , 2015, Scientific Reports.

[18]  Chuang Ma,et al.  Identifying influential spreaders in complex networks based on gravity formula , 2015, ArXiv.

[19]  Qiang Guo,et al.  Locating influential nodes via dynamics-sensitive centrality , 2015, Scientific Reports.

[20]  Ming Tang,et al.  Identifying effective multiple spreaders by coloring complex networks , 2014, ArXiv.

[21]  Jianguo Liu,et al.  Identifying the node spreading influence with largest k-core values , 2014 .

[22]  Ming Tang,et al.  Core-like groups result in invalidation of identifying super-spreader by k-shell decomposition , 2014, Scientific Reports.

[23]  Piet Van Mieghem,et al.  Epidemic processes in complex networks , 2014, ArXiv.

[24]  An Zeng,et al.  Iterative resource allocation for ranking spreaders in complex networks , 2014 .

[25]  Hui Gao,et al.  Identifying Influential Nodes in Large-Scale Directed Networks: The Role of Clustering , 2013, PloS one.

[26]  Mason A. Porter,et al.  Multilayer networks , 2013, J. Complex Networks.

[27]  Chuang Liu,et al.  Epidemic Spreading on Weighted Complex Networks , 2013, ArXiv.

[28]  Duanbing Chen,et al.  Path diversity improves the identification of influential spreaders , 2013, ArXiv.

[29]  Frank Schweitzer,et al.  A k-shell decomposition method for weighted networks , 2012, ArXiv.

[30]  An Zeng,et al.  Ranking spreaders by decomposing complex networks , 2012, ArXiv.

[31]  Yicheng Zhang,et al.  Identifying influential nodes in complex networks , 2012 .

[32]  Jari Saramäki,et al.  Temporal Networks , 2011, Encyclopedia of Social Network Analysis and Mining.

[33]  Yi-Cheng Zhang,et al.  Leaders in Social Networks, the Delicious Case , 2011, PloS one.

[34]  Mayank R. Mehta,et al.  Faculty Opinions recommendation of Identification of influential spreaders in complex networks. , 2011 .

[35]  John Skvoretz,et al.  Node centrality in weighted networks: Generalizing degree and shortest paths , 2010, Soc. Networks.

[36]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[37]  Lev Muchnik,et al.  Identifying influential spreaders in complex networks , 2010, 1001.5285.

[38]  Wei Chen,et al.  Efficient influence maximization in social networks , 2009, KDD.

[39]  Andrea Lancichinetti,et al.  Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  A. Barabasi,et al.  The human disease network , 2007, Proceedings of the National Academy of Sciences.

[41]  Wenxu Wang,et al.  Epidemic spreading on heterogeneous networks with identical infectivity , 2006, physics/0609150.

[42]  C. Dangalchev Residual closeness in networks , 2006 .

[43]  Alessandro Vespignani,et al.  Detecting rich-club ordering in complex networks , 2006, physics/0602134.

[44]  Marjori Matzke,et al.  F1000Prime recommendation of An index to quantify an individual's scientific research output. , 2005 .

[45]  Thomas Petermann,et al.  Role of clustering and gridlike ordering in epidemic spreading. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  Herbert W. Hethcote,et al.  The Mathematics of Infectious Diseases , 2000, SIAM Rev..

[47]  M. Newman,et al.  Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  Jon Kleinberg,et al.  Authoritative sources in a hyperlinked environment , 1999, SODA '98.

[49]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[50]  Gert Sabidussi,et al.  The centrality index of a graph , 1966 .

[51]  G. Milner,et al.  AIA : Maximizing the Spread of Influence through a Social Network , 2015 .

[52]  L. Freeman Centrality in social networks conceptual clarification , 1978 .